Towards a Linguistic Corpus in Spanish with Personality Annotations

  • Yasmín HernandezEmail author
  • Carlos Acevedo Peña
  • Alicia Martínez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10633)


Personality is a combination of characteristics that determine the behavior of individuals in different situations, and it affects people interaction, relationships and environment. To know the personality can be useful to several tasks like marketing and personnel recruitment. Previous research indicates that personality can be predicted by text analysis. We are constructing a linguistic corpus with personality annotation for Spanish language with base on the DISC Model of personality. The corpus aim is to support personality prediction. As a basis for the corpus, we have conducted a study with 120 individuals, they answered a personality test and written some paragraphs. In this paper, we present our approach to construct the corpus base and the results of the study.


DISC model Linguistic corpus Natural language processing Personality recognition 


  1. 1.
    Pratama, B.Y., Sarno, R.: Personality classification based on twitter text using Naïve Bayes, KNN and SVM. In: 2015 International Conference on Data and Software Engineering (ICoDSE), pp. 170–174 (2015)Google Scholar
  2. 2.
    Cantador, I., Fernández-Tobías, I., Bellogín, A.: Relating personality types with user preferences in multiple entertainment domains. In: CEUR Workshop Proceedings, vol. 997 (2013)Google Scholar
  3. 3.
    Golbeck, J., Robles, C., Edmondson, M., Turner, K.: Predicting personality from twitter. In: 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third International Conference on Social Computing (SocialCom), pp. 149–156 (2011)Google Scholar
  4. 4.
    Tupes, E.C., Christal, R.: Recurrent personality factors based on trait ratings. J. Pers. 60(2), 225–251 (1992)CrossRefGoogle Scholar
  5. 5.
    Eysenck, H.J.: Dimensions of Personality. Transaction Publishers, Piscataway (1950)Google Scholar
  6. 6.
    Marston, W.M.: Emotions of normal people. Int. Libr. Psychol. Philos. Sci. Method 405, p. xiii (1928)Google Scholar
  7. 7.
    A. S. Ltd.: What is DISC? Accessed 1 Jan 2017
  8. 8.
    Sáez Achaerandio, Y., Navarro, C., Mochón Sáez, A., Isasi Viñuela, P.: A system for personality and happiness detection. IJIMAI 2(5), 8–16 (2014)Google Scholar
  9. 9.
    Lima, A.C.E.S., de Castro, L.N.: A multi-label, semi-supervised classification approach applied to personality prediction in social media. Neural Netw. 58, 122–130 (2014)CrossRefGoogle Scholar
  10. 10.
    Wald, R., Khoshgoftaar, T., Sumner, C.: Machine prediction of personality from Facebook profiles. In: 2012 IEEE 13th International Conference on Information Reuse and Integration (IRI), pp. 109–115 (2012)Google Scholar
  11. 11.
    Yuniar, I., Agung, A.A.G.: Personality assessment website using DISC. In: 2016 International Conference on Information Management and Technology (ICIMTech), pp. 72–77, Nov 2016Google Scholar
  12. 12.
    Celli, F.: Unsupervised personality recognition for social network sites. In: ICDS 2012 sixth International Conference on Digital Society, pp. 59–62 (2012)Google Scholar
  13. 13.
    Goh, J.X., Schlegel, K., Tignor, S.M., Hall, J.A.: Who is interested in personality? The interest in personality scale and its correlates. Personality Individ. Differ. 101, 185–191 (2016)CrossRefGoogle Scholar
  14. 14.
    Luyckx, K., Daelemans, W.: European language resources, “personae: a corpus for author and personality prediction from text”. In: Sixth International Conference on Language Resource Evaluation LREC 2008, May 2017, pp. 2981–2987 (2008)Google Scholar
  15. 15.
    Liu, Y., Wang, J., Jiang, Y.: PT-LDA: a latent variable model to predict personality traits of social network users. Neurocomputing 210, 155–163 (2016)CrossRefGoogle Scholar
  16. 16.
    Anglim, J., Grant, S.L.: Incremental criterion prediction of personality facets over factors: obtaining unbiased estimates and confidence intervals. J. Res. Pers. 53, 148–157 (2014)CrossRefGoogle Scholar
  17. 17.
    de Vries, R.E., Tybur, J.M., Pollet, T.V., van Vugt, M.: Evolution, situational affordances, and the HEXACO model of personality. Evol. Hum. Behav. 37(5), 407–421 (2015)CrossRefGoogle Scholar
  18. 18.
    John, O.P., Srivastava, S.: Big five inventory (Bfi). Handb. Personal. Theory Res. 2, 102–138 (1999)Google Scholar
  19. 19.
    Adali, S., Golbeck, J.: Predicting personality with social behavior. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 302–309 (2012)Google Scholar
  20. 20.
    Taulé, M.: SENSEVAL, una aproximación computacional al significado, pp. 1–13 (2003)Google Scholar
  21. 21.
    Peng, K.-H., Liou, L.-H., Chang, C.-S., Lee, D.-S.: Predicting personality traits of Chinese users based on Facebook wall posts. In: 2015 24th Wireless and Optical Communication Conference (WOCC), pp. 9–14 (2015)Google Scholar
  22. 22.
    Celli, F., Pianesi, F., Stillwell, D., Kosinski, M.: Workshop on computational personality recognition: shared task. Proc. Work. Pers. Recogn. 2006, 2–5 (2013)Google Scholar
  23. 23.
    I. Publishing: Research report. Technology, pp. 15–25 (2008)Google Scholar
  24. 24.
    D. Insight: The DISC Insights Web Development Team.
  25. 25.
    D. P. 4U: DISC Behavioral Styles.
  26. 26.
    Bradberry, T.: El Codigo de La Personalidad. Editorial Norma, Bogotá colombia (2008)Google Scholar
  27. 27.

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yasmín Hernandez
    • 1
    Email author
  • Carlos Acevedo Peña
    • 2
  • Alicia Martínez
    • 2
  1. 1.Instituto Nacional de Electricidad y Energías Limpias, Gerencia de Tecnologías de la InformaciónCuernavacaMexico
  2. 2.Tecnológico Nacional de México, CENIDETCuernavacaMexico

Personalised recommendations