Advertisement

Criminal Events Detection in News Stories Using Intuitive Classification

  • Luis-Gil Moreno-JiménezEmail author
  • Juan-Manuel Torres-Moreno
  • Noé Alejandro Castro-Sánchez
  • Alondra Nava-Zea
  • Gerardo Sierra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10633)

Abstract

This paper proposes a model for the identification of criminal events through the analysis of journalistic news implementing classification mechanism. The classification process is composed of three sub-process: Information Extraction, Classification process and a Selection process of the classes with the best scores obtained after the classification. To obtain the harmonic mean between recall and precision (F-Score) of this classification model, a criminological corpus called CAD was used to simulate different scenarios. CAD is a corpus in spanish composed of news reporting crimes about homicide, assaults, kidnapping, sexual abuse, and extortion, called High Impact Crimes according to [1].

Notes

Acknowledgments

This work was supported by Mexican Government (Tecnológico Nacional de México/CENIDET, Red Temática en Tecnologías del Lenguaje-Conacyt, Conacyt scholarship 661101) and French Government (Université d’ Avignon et des Pays de Vaucluse/Laboratoire Informatique d’ Avignon).

References

  1. 1.
    Observatorio Nacional Ciudadano Seguridad, Justicia y Legalidad: Reporte sobre delitos de alto impacto Junio 2016. Reporte Año 3, No. 5, México (2016)Google Scholar
  2. 2.
    Kumar, A.S., Gopal, R.K.: Data mining based crime investigation systems: taxonomy and relevance. In: 2015 Global Conference on Communication Technologies (GCCT), pp. 850–853. IEEE (2015)Google Scholar
  3. 3.
    Ku, C.H., Iriberri, A., Leroy, G.: Crime information extraction from police and witness narrative reports. In: International Conference on Technologies for Homeland Security, pp. 193–198. IEEE (2008)Google Scholar
  4. 4.
    Nath, S.V.: Crime data mining. In: Elleithy, K. (ed.) Advances and Innovations in Systems, Computing Sciences and Software Engineering, pp. 405–409. Springer, Dordrecht (2007).  https://doi.org/10.1007/978-1-4020-6264-3_70CrossRefGoogle Scholar
  5. 5.
    Ku, C.H., Leroy, G.: A decision support system: automated crime report analysis and classification for e-government. Gov. Inf. Q. 31, 534–544 (2014)CrossRefGoogle Scholar
  6. 6.
    Dahbur, K., Muscarello, T.: Classification system for serial criminal patterns. Artif. Intell. Law 11, 251–269 (2003)CrossRefGoogle Scholar
  7. 7.
    Chau, M., Xu, J.J., Chen, H.: Extracting meaningful entities from police narrative reports. In: Proceedings of the 2002 Annual National Conference on Digital Government Research, Digital Government Society of North America, pp. 1–5 (2002)Google Scholar
  8. 8.
    Lee, S., Kim, H.J.: News keyword extraction for topic tracking. In: Fourth International Conference on Networked Computing and Advanced Information Management, NCM 2008, vol. 2, pp. 554–559. IEEE (2008)Google Scholar
  9. 9.
    Pinheiro, V., Furtado, V., Pequeno, T., Nogueira, D.: Natural language processing based on semantic inferentialism for extracting crime information from text. In: International Conference on Intelligence and Security Informatics ISI, pp. 19–24. IEEE (2010)Google Scholar
  10. 10.
    Estivill-Castro, V., Lee, I.: Data mining techniques for autonomous exploration of large volumes of geo-referenced crime data. In: Proceedings of the 6th International Conference on Geocomputation, pp. 24–26 (2001)Google Scholar
  11. 11.
    Chen, H., Chung, W., Xu, J.J., Wang, G., Qin, Y., Chau, M.: Crime data mining: a general framework and some examples. Computer 37, 50–56 (2004)CrossRefGoogle Scholar
  12. 12.
    Moreno Jiménez, L.G., et al.: Creación y clasificación de un corpus criminológico en español usando características lingüísticas superficiales. Research in Computing Science (2016, accepted)Google Scholar
  13. 13.
    Associated Press: 2016 AP Stylebook. Spiral-Bound (2016)Google Scholar
  14. 14.
    Torres-Moreno, J.M.: Automatic Text Summarization. Wiley, Hoboken (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Luis-Gil Moreno-Jiménez
    • 1
    Email author
  • Juan-Manuel Torres-Moreno
    • 2
    • 3
  • Noé Alejandro Castro-Sánchez
    • 1
  • Alondra Nava-Zea
    • 1
  • Gerardo Sierra
    • 4
  1. 1.Centro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de MéxicoCuernavacaMexico
  2. 2.LIA/Université d’Avignon et des Pays de VaucluseAvignonFrance
  3. 3.École Polytechnique de MontréalMontrealCanada
  4. 4.Universidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations