Advertisement

Versatility of Artificial Hydrocarbon Networks for Supervised Learning

  • Hiram PonceEmail author
  • Ma Lourdes Martínez-Villaseñor
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10632)

Abstract

Surveys on supervised machine show that each technique has strengths and weaknesses that make each of them more suitable for a particular domain or learning task. No technique is capable to tackle every supervised learning task, and it is difficult to comply with all possible desirable features of each particular domain. However, it is important that a new technique comply with the most requirements and desirable features of as many domains and learning tasks as possible. In this paper, we presented artificial hydrocarbon networks (AHN) as versatile and efficient supervised learning method. We determined the ability of AHN to solve different problem domains, with different data-sources and to learn different tasks. The analysis considered six applications in which AHN was successfully applied.

Keywords

Artificial organic networks Machine learning Versatility Interpretability 

References

  1. 1.
    Avci, A., Bosch, S., Marin-Perianu, M., Marin-Periauni, R., Havinga, P.: Activity recognition using inertial sensing for healthcare, wellbeing and sports applications. In: 23rd International Conference on Architecture of Computing Systems, pp. 1–10 (2010)Google Scholar
  2. 2.
    Barrera, A.: Mobile Robots Navigation. InTechOpen, London (2010)CrossRefGoogle Scholar
  3. 3.
    Beheshti-Kashi, S., Karimi, H.R., Thoben, K.D., Lutjen, M., Teucke, M.: A survey on retail sales forecasting and prediction in fashion markets. Syst. Sci. Control. Eng.: Open Access J. 3(1), 154–161 (2015)CrossRefGoogle Scholar
  4. 4.
    Diniz, P.S.R.: Adaptive Filtering Algorithms and Practical Implementation. Springer, New York (2008).  https://doi.org/10.1007/978-1-4614-4106-9CrossRefzbMATHGoogle Scholar
  5. 5.
    Freitas, A.A.: Comprehensible classification models: a position paper. ACM SIGKDD Explor. Newsl. 15(1), 1–10 (2014)CrossRefGoogle Scholar
  6. 6.
    Grinke, E., Tetzlaff, C., Wörgötter, F., Manoonpong, P.: Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot. Front. Neurorobotics 9(11), 1–15 (2015)Google Scholar
  7. 7.
    Kim, E., Helal, S., Cook, D.: Human activity recognition and pattern discovery. IEEE Pervasive Comput. 9, 48–53 (2010)CrossRefGoogle Scholar
  8. 8.
    Kotsiantis, S.B., Sotiris, B., Zaharakis, I., Pintelas, P.: Supervised machine learning: a review of classification techniques. In: Proceedings of the 2007 Conference on Emerging Artificial Intelligence Applications in Computer Engineering, pp. 3–24 (2007)Google Scholar
  9. 9.
    Letham, B., Rudin, C.: Interpretable classifiers using rules and Bayesian analysis: building a better stroke prediction model. Technical report 609, Department of Statistics, University of Washington, August 2013Google Scholar
  10. 10.
    Letham, B., Rudin, C., MacCormick, T.H., Madigan, D.: An interpretable stroke prediction model using rules and Bayesian analysis. In: 27th AAAI Conference on Artificial Intelligence, pp. 65–67. MIT (2013)Google Scholar
  11. 11.
    Llorca, D., et al.: Autonomous pedestrian collision avoidance using a fuzzy steering controller. IEEE Trans. Intell. Transp. Syst. 12(2), 390–401 (2011)CrossRefGoogle Scholar
  12. 12.
    Mamoshina, P., Vieira, A., Putin, E., Zhavoronkov, A.: Applications of deep learning in biomedicine. Mol. Pharm. 13(5), 1445–1454 (2016)CrossRefGoogle Scholar
  13. 13.
    Martens, D., Vanthienen, J., Verbeke, W., Baesens, B.: Performance of classification models from a user perspective. Decis. Support Syst. 51(4), 782–793 (2011)CrossRefGoogle Scholar
  14. 14.
    Nettleton, D.F., Orriols-Puig, A., Fornells, A.: A study of the effect of different types of noise on the precision of supervised learning techniques. Artif. Intell. Rev. 33, 275–306 (2010)CrossRefGoogle Scholar
  15. 15.
    Palmer, J., Chakravrty, A.: Supervised machine learning, Chap. 15, pp. 231–246. Wiley (2015)Google Scholar
  16. 16.
    Ponce Espinosa, H.E. (ed.): Nature-Inspired Computing for Control Systems. SSDC, vol. 40. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-26230-7CrossRefzbMATHGoogle Scholar
  17. 17.
    Ponce, H., Martínez-Villasenor, M.L.: Interpretability of artificial hydrocarbon networks for breast cancer classification. In: 2017 International Joint Conference on Neural Networks, pp. 3535–3542. IEEE (2017)Google Scholar
  18. 18.
    Ponce, H., Martínez-Villasenor, M.L., Miralles-Pechuán, L.: A novel wearable sensor-based human activity recognition approach using artificial hydrocarbon networks. Sensors 16(7), 1033 (2016)CrossRefGoogle Scholar
  19. 19.
    Ponce, H., Miralles-Pechúan, L., de Lourdes Martínez-Villaseñor, M.: Artificial hydrocarbon networks for online sales prediction. In: Lagunas, O.P., Alcántara, O.H., Figueroa, G.A. (eds.) MICAI 2015. LNCS (LNAI), vol. 9414, pp. 498–508. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-27101-9_38CrossRefGoogle Scholar
  20. 20.
    Ponce, H., Miralles-Pechuán, L., Martínez-Villasenor, M.L.: A flexible approach for human activity recognition using artificial hydrocarbon networks. Sensors 16(11), 1715 (2016)CrossRefGoogle Scholar
  21. 21.
    Ponce, H., Moya-Albor, E., Brieva, J.: A novel artificial organic controller with hermite optical flow feedback for mobile robot navigation, Chap. 6, pp. 145–169. InTechOpen (2016)Google Scholar
  22. 22.
    Ponce, H., Ponce, P.: Artificial organic networks. In: 2011 IEEE Conference on Electronics, Robotics and Automotive Mechanics, pp. 29–34. IEEE (2011)Google Scholar
  23. 23.
    Ponce, H., Ponce, P., Molina, A.: Artificial hydrocarbon networks fuzzy inference system. Math. Probl. Eng. 2013, 13 (2013)CrossRefGoogle Scholar
  24. 24.
    Ponce, H., Ponce, P., Molina, A.: Adaptive noise filtering based on artificial hydrocarbon networks: an application to audio signals. Expert. Syst. Appl. 41(14), 6512–6523 (2014)CrossRefGoogle Scholar
  25. 25.
    Ponce-Espinosa, H., Ponce-Cruz, P., Molina, A.: Artificial Organic Networks: Artificial Intelligence Based on Carbon Networks. Studies in Computational Intelligence, vol. 521. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-02472-1CrossRefGoogle Scholar
  26. 26.
    Ponce, H., Ponce, P., Molina, A.: The development of an artificial organic networks toolkit for LabVIEW. J. Comput. Chem. 36(7), 478–492 (2015)CrossRefGoogle Scholar
  27. 27.
    Singh, Y., Bhatia, P.K., Sangwan, O.: A review of studies on machine learning techniques. Int. J. Comput. Sci. Secur. 1(1), 70–84 (2007)Google Scholar
  28. 28.
    Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine learning for interdependent and structured output spaces. In: Proceedings of the 21st International Conference on Machine Learning ICML 2004, pp. 104–111 (2004)Google Scholar
  29. 29.
    Varadarajan, K.K., Suhasini, P.R., Manikantan, K., Ramachandran, S.: Face recognition using block based feature extraction with CZT and Goertzel-algorithm as a preprocessing technique. Procedia Comput. Sci. 46, 1458–1467 (2015)CrossRefGoogle Scholar
  30. 30.
    Winder, S.: Analog and Digital Filter Design. Newnes/ElsevierScience, Woburn (2002)Google Scholar
  31. 31.
    Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2016)Google Scholar
  32. 32.
    Wolpert, D.H.: The supervised learning no-free-lunch theorems. In: World Conference on Soft Computing (2001)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Hiram Ponce
    • 1
    Email author
  • Ma Lourdes Martínez-Villaseñor
    • 1
  1. 1.Facultad de IngenieríaUniversidad PanamericanaMexico CityMexico

Personalised recommendations