Analysis and Estimation of Intra-body Communications Path Loss for Galvanic Coupling

  • Ibrahim N. Alquaydheb
  • Ahmed E. Khorshid
  • Ahmed M. Eltawil
Conference paper
Part of the Internet of Things book series (ITTCC)


The desire to have ultra-compact, low power patient monitoring techniques that include intercommunicating wearable and implanted sensors/actuators encourages researchers to develop new communication methods that can replace current Radio Frequency (RF) wireless communication links. RF links require power and area hungry analog circuitry that limits the usability of such systems. This paper evaluates different techniques for Intra-body communication (IBC) where the signal is coupled galvanically to the human tissue. Finite element method (FEM) technique is utilized to determine the path loss of the human channel (human arm model) and to examine the current density distribution in human tissues using both a full and a reduced order model. In addition, we investigate the effect of bone fracture internal fixation implant effect on the channel parameters.


Path loss Galvanic coupling Intra-body communications 


  1. 1.
  2. 2.
    Teshome, A.K., Kibret, B., Lai, D.T.: Galvanically coupled intrabody communications for medical implants: a unified analytic model. IEEE Trans. Antennas Propag. 64(7), 2989–3002 (2016)CrossRefGoogle Scholar
  3. 3.
    Callejon, M.A., Naranjo-Hernandez, D., Reina-Tosina, J., Roa, L.M.: Distributed circuit modeling of galvanic and capacitive coupling for intrabody communication. IEEE Trans. Biomed. Eng. 59(11), 3263–3269 (2012)CrossRefGoogle Scholar
  4. 4.
    Swaminathan, M., Cabrera, F.S., Pujol, J.S., Muncuk, U., Schirner, G., Chowd-bury, K.R.: Multi-path model and sensitivity analysis for galvanic coupled intra-body communication through layered tissue. IEEE Trans. Biomed. Circuits Syst. 10(2), 339–351 (2016)CrossRefGoogle Scholar
  5. 5.
    Song, Y., Hao, Q., Zhang, K., Wang, M., Chu, Y., Kang, B.: The simulation method of the galvanic coupling intrabody communication with different signal transmission paths. IEEE Trans. Instrum. Meas. 60(4), 1257–1266 (2011)CrossRefGoogle Scholar
  6. 6.
    Hachisuka, K., Terauchi, Y., Kishi, Y., Sasaki, K., Hirota, T., Hosaka, H., Ito, K.: Simplified circuit modeling and fabrication of intrabody communication devices. Sens. Actuators A: Phys. 130, 322–330 (2006)CrossRefGoogle Scholar
  7. 7.
    Ansoft Corporation. Ansoft High Frequency Structure Simulator v10 Users Guide. Ansoft Corporation (2005)Google Scholar
  8. 8.
    Wegmller, M.S.: Intra-body Communication for biomedical sensor networks. Doctoral Dissertation, ETH Zurich (2007)Google Scholar
  9. 9.
    Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41(11), 2271 (1996)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Hachisuka, K., Takeda, T., Terauchi, Y., Sasaki, K., Hosaka, H., Itao, K.: Intra-body data transmission for the personal area network. Microsyst. Technol. 11(8–10), 1020–1027 (2005)CrossRefGoogle Scholar
  12. 12.
    Ahlbom, A., Bergqvist, U., Bernhardt, J.H., Cesarini, J.P., Grandolfo, M., Hietanen, M., Swicord, M.L.: Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 74(4), 494–521 (1998)Google Scholar
  13. 13.
    Khorshid, A. E., Eltawil, A. M., Kurdahi, F.: Intra-body communication model based on variable biological parameters. In: 2015 49th Asilomar Conference on Signals, Systems and Computers, pp. 948–951, Nov 2015. IEEE (2015)Google Scholar
  14. 14.
    Kibret, B., Seyedi, M., Lai, D.T., Faulkner, M.: Investigation of galvanic-coupled intrabody communication using the human body circuit model. IEEE J. Biomed. Health Inf. 18(4), 1196–1206 (2014)CrossRefGoogle Scholar
  15. 15.
    Hoyt, K., Castaneda, B., Parker, K.J.: 5C-6 muscle tissue characterization using quantitative sonoelastography: Preliminary results. In: In: IEEE Ultra-sonics Symposium, pp. 365–368, Oct 2007. IEEE (2007)Google Scholar
  16. 16.
    McCartney, W.T.. The design, manufacture and analysis of a new implant for fracture fixation in human and veterinary Orthopaedic surgery: the Bone Fastenerod. Doctoral Dissertation, Dublin City University (2002)Google Scholar
  17. 17.
    Dynamic Compression Plates, DCP, 3.5 mm.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ibrahim N. Alquaydheb
    • 1
  • Ahmed E. Khorshid
    • 1
  • Ahmed M. Eltawil
    • 1
  1. 1.University of CaliforniaIrvineUSA

Personalised recommendations