Advertisement

Electrode Impedance Modeling for Channel Characterization for Intra-body Communication

  • Ahmed E. KhorshidEmail author
  • Ibrahim N. Alquaydheb
  • Ahmed M. Eltawil
Conference paper
Part of the Internet of Things book series (ITTCC)

Abstract

This paper discusses techniques for modeling the electrode/human contact impedances for Intra-body communication applications. Factors that affect the electrode impedance are considered and tuned in order to study their impact on the channel model (gain/attenuation profile). Finally, an explanation is provided for the relation between the different basic impedances and blocks that are considered in the channel model, and the sensitivity of the channel gain to the variation in such parameters.

Keywords

Body area networks Intra-body communications Electrode impedance Channel modeling Circuit model Galvanic coupling 

Notes

Acknowledgements

The authors gratefully acknowledge that this work was supported by the National Institute of Justice (NIJ) grant number 2016-R2-CX-0014.

References

  1. 1.
    Zimmerman, T.G.: Personal Area Network (PAN). M.S. thesis. MIT Press, Cambridge, MA (1995)Google Scholar
  2. 2.
    Handa, T., Shoji, S., Ike, S., Takeda, S., Sekiguchi, T.: A very low power consumption wireless ECG monitoring system using body as a signal transmission medium. In: Proceedings of the International Conference on Transducers, Solid-State Sensors Actuators, vol. 2, pp. 1003–1006, June 1997Google Scholar
  3. 3.
    Khorshid, A.E., Eltawil, A.M., Kurdahi, F.: On the optimum data carrier for intra-body communication applications. In: Proceedings of the 11th EAI International Conference on Body Area Networks, pp. 137–140 (2016)Google Scholar
  4. 4.
    Hachisuka, K., Terauchi, Y., Kishi, Y., Hirota, T., Sasaki, K., Hosaka, H., Ito, K.: Simplified circuit modeling and fabrication of intrabody communication devices. In: Proceedings of the IEEE International Conference on Solid-State Sensor, Actuators, Microsystems, pp. 461–464 (2005)Google Scholar
  5. 5.
    Wegmueller, M.S., Kuhn, A., Froehlich, J., Oberle, M., Felber, N., Kuster, N., Fichtner W.: An attempt to model the human body as a communication channel. IEEE Trans. Biomed. Eng. 54(10), 1851–1857 (2007)CrossRefGoogle Scholar
  6. 6.
    Wegmueller, M.S., Oberle, M., Felber, N., Kuster, N., Fichtner, W.: Signal transmission by galvanic coupling through the human body. IEEE Trans. Instrum. Meas. 59(4), 963–969 (2010)CrossRefGoogle Scholar
  7. 7.
    Khorshid, A.E., Eltawil, A.M., Kurdahi, F.: Intra-body communication model based on variable biological parameters. In: 2015 49th Asilomar Conference on Signals, Systems and Computers, pp. 948–951, November 2015Google Scholar
  8. 8.
    Xu, R., et al.: Electric-field intrabody communication channel modeling with finite-element method. IEEE Trans. Bio-Med. Eng. 58(3), 705–712 (2011)CrossRefGoogle Scholar
  9. 9.
    Cho, et al.: The human body characteristics as a signal transmission medium for intrabody communication. IEEE Trans. Microw. Theory Tech. 55(5), 1080–1085 (2007)CrossRefGoogle Scholar
  10. 10.
    Callejón, M.A., et al.: Distributed circuit modeling of galvanic and capacitive coupling for intrabody communication. IEEE Trans. Bio-Med. Eng. 59(11), 3263–3269 (2012)CrossRefGoogle Scholar
  11. 11.
    Kibret, B., et al.: Investigation of galvanic-coupled intrabody communication using the human body circuit model. IEEE J. Biomed. Health Informat. 18(4), 1196–1206 (2014)CrossRefGoogle Scholar
  12. 12.
    Park, J., Garudadri, H., Mercier, P.P.: Channel modeling of miniaturized battery-powered capacitive human body communication systems. IEEE Trans. Biomed. Eng. 64(2), 452–462Google Scholar
  13. 13.
    Neuman, M.R.: Biopotential electrodes. In: Bronzino, J.D. (ed) The Biomedical Engineering Handbook, 2nd edn. CRC Press LLC, Boca Raton (2000)Google Scholar
  14. 14.
    Saadi, H., Attari, M.: Electrode-gel-skin interface characterization and modeling for surface biopotential recording: Impedance measurements and noise. In: 2nd International Conference on Advances in Biomedical Engineering (ICABME), pp. 49–52, September 2013Google Scholar
  15. 15.
    Assambo, C., Baba, A., Dozio, R., Burke, M.J.: Determination of the parameters of the skin-electrode impedance model for ECG measurement. In: Proceedings of the 6th WSEAS International Conference on Electronics, Hardware, Wireless and Optical Communications, Corfu Island, Greece, pp. 90–95, February 2007Google Scholar
  16. 16.
    Kanai, H., Chatterjee, I., Gandhi, O.P.: Human body impedance for electromagnetic hazard analysis in the VLF to MF band. IEEE Trans. Microw. Theory Tech. 32(8), 763–772 (1984)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ahmed E. Khorshid
    • 1
    Email author
  • Ibrahim N. Alquaydheb
    • 1
  • Ahmed M. Eltawil
    • 1
  1. 1.Electrical Engineering and Computer Science DepartmentUniversity of CaliforniaIrvineUSA

Personalised recommendations