A Noninvasive Continuous Fetal Heart Rate Monitoring System for Mobile Healthcare Based on Fetal Phonocardiography

  • Pengjie Zhang
  • Shiwei Ye
  • Zhipei HuangEmail author
  • Dina Jiaerken
  • Shuxia Zhao
  • Lingyan Zhang
  • Jiankang Wu
Conference paper
Part of the Internet of Things book series (ITTCC)


Although the noninvasive continuous fetal heart rate (FHR) monitor is often recommended, the Doppler Ultrasonographic Cardiotocography (CTG) is improper for long-term monitor due to the less safety and the requirement of professional operation skill. In this paper, we design a noninvasive, continuous and real-time FHR monitoring system based on fetal phonocardiography by stationary wavelet denoising and cyclostationary process. Good agreement with CTG is obtained by Bland Altman analysis. Besides, quantitative results show that the FHR has an average accuracy of 97% compared with CTG on clinical data sets. The proposed system provides an alternative for CTG.


Fetal heart rate Fetal phonocardiography (FPCG) Stationary wavelet process Cyclostationary process Bland Altman analysis 



This work was supported by Special Fund for Scientific Research Cooperation of University Chinese Academy of Sciences.


  1. 1.
    Várady, P., Wildt, L., Benyó, Z., Hein, A.: An advanced method in fetal phonocardiography. Comput. Methods Programs Biomed. 71, 283 (2003)CrossRefGoogle Scholar
  2. 2.
    Martin, J.A., Hamilton, B.E., Osterman, M.J., Curtin, S.C., Matthews, T.J.: Births: final data for 2012. National vital statistics reports: from the Centers for Disease Control and Prevention, National Center for Health Statistics. Natl. Vital Stat. Syst. 59, 3–71 (2010)Google Scholar
  3. 3.
    Mantini, D., Comani, S., Alleva, G., Romani, G.L.: Fetal cardiac time intervals: validation of an automatic tool for beat-to-beat detection on fetal magnetocardiograms. Int. Res. J. Pharm. 3 (2005)Google Scholar
  4. 4.
    Sameni, R., Clifford, G.D.: A review of fetal ECG signal processing; issues and promising directions. Open Pacing Electrophysiol. Therapy J. 3, 4 (2010)Google Scholar
  5. 5.
    Mittra, A.K.: System simulation and comparative analysis of foetal heart sound de-noising techniques for advanced phonocardiography. Int. J. Biomed. Eng. Technol. 1, 73–85 (2007)CrossRefGoogle Scholar
  6. 6.
    Adithya, P.C., Sankar, R., Moreno, W.A., Hart, S.: Trends in fetal monitoring through phonocardiography: challenges and future directions. Biomed. Signal Process. Control 33, 289–305 (2017)CrossRefGoogle Scholar
  7. 7.
    Talbert, D.G., Davies, W.L., Johnson, F., Abraham, N., Colley, N., Southall, D.P.: Wide bandwidth fetal phonography using a sensor matched to the compliance of the mother’s abdominal wall. IEEE Trans. Bio-med. Eng. 33, 175 (1986)CrossRefGoogle Scholar
  8. 8.
    Bassil, H.E., Dripps, J.H.: Real time processing and analysis of fetal phonocardiographic signals. Clinical physics and physiological measurement: an official journal of the Hospital Physicists’ Association, Deutsche Gesellschaft für Medizinische Physik and the European Federation of Organisations for Medical Physics 10(Suppl B), 67 (1989)CrossRefGoogle Scholar
  9. 9.
    Soysa, W.N.M., Godaliyadda, R.I., Wijayakulasooriya, J.V., Ekanayake, M.P.B., Kandauda, I.C.: An eigenfilter based approach for extraction of fetal heart signals under noisy conditions using adaptive filters. In: Fourth International Conference on Computational Intelligence, Modelling and Simulation, pp. 254–259Google Scholar
  10. 10.
    Martinek, R., Nedoma, J., Fajkus, M., Kahankova, R., Konecny, J., Janku, P., Kepak, S., Bilik, P., Nazeran, H.: A phonocardiographic-based fiber-optic sensor and adaptive filtering system for noninvasive continuous fetal heart rate monitoring. Sensors 17, 890 (2017)CrossRefGoogle Scholar
  11. 11.
    Mittra, A.K., Choudhari, N.K.: Time-frequency analysis of foetal heart sound signal for the prediction of prenatal anomalies. J. Med. Eng. Technol. 33, 296–302 (2009)CrossRefGoogle Scholar
  12. 12.
    Balogh, Á.T., Kovács, F.: Application of phonocardiography on preterm infants with patent ductus arteriosus ☆. Biomed. Signal Process. Control 6, 337–345 (2011)CrossRefGoogle Scholar
  13. 13.
    Chourasia, V.S., Mittra, A.K.: A comparative analysis of de-noising algorithms for fetal phonocardiographic signals. IETE J. Res. 55, 10–15 (2009)CrossRefGoogle Scholar
  14. 14.
    Chourasia, V.S., Mittra, A.K.: Selection of mother wavelet and denoising algorithm for analysis of foetal phonocardiographic signals. J. Med. Eng. Technol. 33, 442–448 (2009)CrossRefGoogle Scholar
  15. 15.
    Vaisman, S., Yaniv Salem, S., Holcberg, G., Geva, A.B.: Passive fetal monitoring by adaptive wavelet denoising method. Comput. Biol. Med. 42, 171–179 (2012)CrossRefGoogle Scholar
  16. 16.
    Chourasia, V.S., Tiwari, A.K., Gangopadhyay, R.: A novel approach for phonocardiographic signals processing to make possible fetal heart rate evaluations. Digit. Signal Process. 30, 165–183 (2014)CrossRefGoogle Scholar
  17. 17.
    Samieinasab, M., Sameni, R.: Fetal phonocardiogram extraction using single channel blind source separation. In: Electrical Engineering, pp. 78–83Google Scholar
  18. 18.
    Warbhe, A.D., Dharaskar, R.V., Kalambhe, B.: A single channel phonocardiograph processing using EMD, SVD, and EFICA. In: International Conference on Emerging Trends in Engineering and Technology, pp. 578–581Google Scholar
  19. 19.
    Noorzadeh, S., Rivet, B., Guméry, P.Y.: A multi-modal approach using a non-parametric model to extract fetal ECG. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 832–836Google Scholar
  20. 20.
    Fowler, J.E.: The redundant discrete wavelet transform and additive noise. IEEE Signal Process. Lett. 12, 629–632 (2005)CrossRefGoogle Scholar
  21. 21.
    Donoho, D., Johnstone, I.: Adapting to unknown smoothness via wavelet shrinkage. Publ. Am. Stat. Assoc. 90, 1200–1224 (1995)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Li, T., Li, T., Qiu, T., Park, Y.: Fetal heart rate monitoring from phonocardiograph signal using repetition frequency of heart sounds. J. Electr. Comput. Eng. 2016, 3 (2016)Google Scholar
  23. 23.
    Gardner, W.A., Napolitano, A., Paura, L.: Cyclostationarity: half a century of research. Signal Process. 86, 639–697 (2006)CrossRefGoogle Scholar
  24. 24.
    Cesarelli, M., Ruffo, M., Romano, M., Bifulco, P.: Simulation of foetal phonocardiographic recordings for testing of FHR extraction algorithms. Comput. Methods Programs Biomed. 107, 513–523 (2012)CrossRefGoogle Scholar
  25. 25.
    Ruffo, M., Cesarelli, M., Romano, M., Bifulco, P., Fratini, A.: An algorithm for FHR estimation from foetal phonocardiographic signals. Biomed. Signal Process. Control 5, 131–141 (2010)CrossRefGoogle Scholar
  26. 26.
    Giavarina, D.: Understanding Bland Altman analysis. Biochemia Medica 25, 141 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pengjie Zhang
    • 1
  • Shiwei Ye
    • 1
  • Zhipei Huang
    • 1
    Email author
  • Dina Jiaerken
    • 1
  • Shuxia Zhao
    • 2
  • Lingyan Zhang
    • 2
  • Jiankang Wu
    • 1
  1. 1.University of Chinese Academy of SciencesBeijingChina
  2. 2.Department of Gynecology and ObstetricsBeijing Huairou Hospital of University of Chinese Academy of SciencesBeijingChina

Personalised recommendations