Advertisement

Antarctic Soil Microbial Communities in a Changing Environment: Their Contributions to the Sustainability of Antarctic Ecosystems and the Bioremediation of Anthropogenic Pollution

  • Cecilia G. Flocco
  • Walter P. Mac Cormack
  • Kornelia Smalla
Chapter
Part of the Springer Polar Sciences book series (SPPS)

Abstract

Antarctica, one of the most harsh and isolated environments on Earth, is concurrently facing the shaping forces of global environmental changes and the impact of human activities in the continent, the latter represented by the operation of scientific stations and touristic expeditions which have significantly expanded over the last decades. Although still largely preserved, different types and levels of contamination of soils, sediments, and coastal waters were detected, being petroleum-derived hydrocarbons the predominant pollutants. Since the environmental protocol to the Antarctic Treaty prohibits the application of site-disruptive cleanup methods and the introduction of foreign species, studying the natural capacity of indigenous microbial communities to degrade pollutants (bioremediation) emerges as a key step in the design of suitable in situ pollution remediation strategies. This chapter describes the interactions of environmental and anthropogenic sources of disturbance to Antarctic ecosystems and the recent advances in our understanding of the ecological contributions of indigenous soil prokaryote communities, delving into their capacity to remediate polluted terrestrial environments. The aims are to highlight the crucial contributions of soil microbes to the functioning and sustainability of Antarctic ecosystems and enrich the body of knowledge supporting the engineering of bioremediation strategies for the restoration of terrestrial environments affected by anthropogenic sources of pollution.

Keywords

Soil microbial communities Anthropogenic disturbances Chemical contamination Cold-temperature bioremediation  Gene flow 

Notes

Acknowledgments

C.G. Flocco is very thankful to the Alexander von Humboldt Foundation, supporting the creation of this chapter through a visiting scientist grant, and to the host institution, the Julius Kühn-Institut in Braunschweig, Germany. Our fieldwork at the Antarctic base Carlini was supported by Instituto Antártico Argentino, the University of Buenos Aires, and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Many thanks go to Carlini station and the icebreaker ARA Irizar crews for transportation and logistic support.

References

  1. Abele, D., Vazquez, S., Buma, A. G. J., et al. (2017). Pelagic and benthic communities of the Antarctic ecosystem of Potter Cove: Genomics and ecological implications. Marine Genomics, 33, 1–11.  https://doi.org/10.1016/j.margen.2017.05.001.CrossRefGoogle Scholar
  2. Achten, C., & Andersson, J. T. (2015). Overview of polycyclic aromatic compounds (PAC). Polycyclic Aromatic Compounds, 35, 177–186.CrossRefGoogle Scholar
  3. Ah Tow, L., & Cowan, D. A. (2005). Dissemination and survival of non-indigenous bacterial genomes in pristine Antarctic environments. Extremophiles, 9, 385–389.  https://doi.org/10.1007/s00792-005-0452-5.CrossRefPubMedGoogle Scholar
  4. Aislabie, J., & Foght, J. M. (2010). Response of polar soil bacterial communities to fuel spills. In A. K. Bej, J. Aislabie, & R. M. Atlas (Eds.), Polar microbiology: The ecology, biodiversity and bioremediation potential of microorganisms in extremely cold environments (pp. 215–230). Boca Raton: Taylor & Francis.Google Scholar
  5. Aislabie, J., McLeod, M., & Fraser, R. (1998). Potential for biodegradation of hydrocarbons in soil from the Ross Dependency, Antarctica. Applied Microbiology and Biotechnology, 49, 210–214.CrossRefGoogle Scholar
  6. Aislabie, J., Foght, J., & Saul, D. (2000a). Aromatic hydrocarbon-degrading bacteria from soil near Scott Base, Antarctica. Polar Biology, 23, 183–188.CrossRefGoogle Scholar
  7. Aislabie, J., Fraser, R., Duncan, S., et al. (2000b). Effects of oil spills on microbial heterotrophs in Antarctic soils. Polar Biology, 24, 308–313.CrossRefGoogle Scholar
  8. Aislabie, J. M., Balks, M. R., Foght, J. M., et al. (2004). Hydrocarbons spills on Antarctic soils: Effects and management. Environmental Science & Technology, 38, 1265–1247.CrossRefGoogle Scholar
  9. Aislabie, J., Saul, D. J., & Foght, J. M. (2006). Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles, 10, 171–179.CrossRefGoogle Scholar
  10. Aran, M., Smal, C., Pellizza, L., et al. (2014). Solution and crystal structure of BA42, a protein from the Antarctic bacterium Bizionia argentinensis comprised of a stand-alone TPM domain. Proteins: Structure, Function, and Bioinformatics, 82, 3062–3078.  https://doi.org/10.1002/prot.24667.CrossRefGoogle Scholar
  11. Atlas, R. M. (2010). Microbial bioremediation in polar environments: Current status and future directions. In A. K. Bej, J. Aislabie, & R. M. Atlas (Eds.), Polar microbiology: The ecology, biodiversity and bioremediation potential of microorganisms in extremely cold environments (pp. 373–391). Boca Raton: Taylor & Francis.Google Scholar
  12. Azam, F., Smith, D. C., & Hollibaugh, J. T. (1991). The role of the microbial loop in Antarctic pelagic ecosystems. Polar Research, 10, 239–244.  https://doi.org/10.1111/j.1751-8369.1991.tb00649.x.CrossRefGoogle Scholar
  13. Baraniecki, C. A., Aislabie, J., & Foght, J. M. (2002). Characterization of Sphingomonas sp. Ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil. Microbial Ecology, 43, 44–54.CrossRefGoogle Scholar
  14. Barbato, M., Mapelli, F., Magagnini, M., et al. (2016). Hydrocarbon pollutants shape bacterial community assembly of harbor sediments. Marine Pollution Bulletin, 104, 211–220.  https://doi.org/10.1016/j.marpolbul.2016.01.029.CrossRefPubMedGoogle Scholar
  15. Bargagli, R. (2005). Antarctic ecosystems: environmental contaminants, climate change and human impact. In Ecological studies (Vol. 175). Berlin: Springer, 395pp.Google Scholar
  16. Bargagli. (2008). Environmental contamination in Antarctic ecosystems. Science of the Total Environment, 400, 212–226.CrossRefGoogle Scholar
  17. Bej, A., Saul, D., & Aislabie, J. (2000). Cold-tolerant alkane-degrading Rhodococcus species from Antarctica. Polar Biology, 23, 100–105.  https://doi.org/10.1007/s003000050014.CrossRefGoogle Scholar
  18. Bercovich, A., Vazquez, S. C., Yankilevich, P., et al. (2008). Bizionia argentinensis sp. nov., isolated from surface marine waters, Antarctica. International Journal of Systematic Bacteriology, 58, 2363–2367.Google Scholar
  19. Berg, G., Köberl, M., Rybakova, D., et al. (2017). Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbial Ecology, 93, 5.  https://doi.org/10.1093/femsec/fix050.CrossRefGoogle Scholar
  20. Berlemont, R., Pipers, D., Delsaute, M., et al. (2011). Exploring the Antarctic soil metagenome as a source of novel cold-adapted enzymes and genetic mobile elements. Revista Argentina de Microbiología, 43, 94–103.  https://doi.org/10.1590/S0325-75412011000200005.CrossRefPubMedGoogle Scholar
  21. Blanchette, R., Held, B. W., Jurgens, J. A., et al. (2004). Environmental pollution from the Scott and Shackleton expeditions during the Heroic Age of Antarctic exploration. Polar Record, 40, 143–151.CrossRefGoogle Scholar
  22. Bordenave, S., Goñi-Urriza, M. S., Caumette, P., et al. (2007). Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat. Applied and Environmental Microbiology, 73, 6089–6097.  https://doi.org/10.1128/AEM.01352-07.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Bosi, E., Fondi, M., Orlandini, V., et al. (2017). The pangenome of Antarctic Pseudoalteromonas bacteria: Evolutionary and functional insights. BMC Genomics, 18, 93.  https://doi.org/10.1186/s12864-016-3382-y.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Bottos, E., Scarrow, J., Archer, S., et al. (2014). Bacterial community structures of Antarctic soils. In D. A. Cowan (Ed.), Antarctic terrestrial microbiology: Physical and biological properties of Antarctic soils (pp. 9–33). Heidelberg: Springer.  https://doi.org/10.1007/978-3-642-45213-0_2.CrossRefGoogle Scholar
  25. Bruntner, C., Binder, T., Pathom-Aree, W., et al. (2005). Frigocyclinone, a novel angucyclinone antibiotic produced by a Streptomyces griseus strain from Antarctica. The Journal of Antibiotics, 58, 346–349.CrossRefGoogle Scholar
  26. Cabrerizo, A., Dachs, J., Barceló, D., et al. (2013). Climatic and biogeochemical controls on the remobilization and reservoirs of persistent organic pollutants in Antarctica. Environmental Science & Technology, 47, 4299–4306.  https://doi.org/10.1021/es400471c.CrossRefGoogle Scholar
  27. Cases, I., & de Lorenzo, V. (2005). Genetically modified organisms for the environment: Stories of success and failure and what we have learned from them. International Microbiology, 8, 213–222.PubMedGoogle Scholar
  28. Chan, Y., Van Nostrand, J. D., Zhou, J., et al. (2013). Functional ecology of an Antarctic Dry Valley. Proceedings of the National Academy of Sciences, 110, 8990–8995.  https://doi.org/10.1073/pnas.1300643110.CrossRefGoogle Scholar
  29. Chong, C.-W., Pearce, D., Convey, P., et al. (2012). Patterns in the distribution of soil bacterial 16S rRNA gene sequences from different regions of Antarctica. Geoderma, 181–182, 45–55.  https://doi.org/10.1016/j.geoderma.2012.02.017.CrossRefGoogle Scholar
  30. Chong, C.-W., Pearce, D. A., & Convey, P. (2015). Emerging spatial patterns in Antarctic prokaryotes. Frontiers in Microbiology, 6, 1058.  https://doi.org/10.3389/fmicb.2015.01058.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Convey, P. (2013). Antarctic ecosystems. In S. A. Levin (Ed.), Encyclopedia of biodiversity (Vol. 1, 2nd ed., pp. 179–188). San Diego: Elsevier.CrossRefGoogle Scholar
  32. Convey, P., & Smith, R. I. L. (2006). Responses of terrestrial Antarctic ecosystems to climate change. Plant Ecology, 182, 1–10.Google Scholar
  33. Convey, P., Hughes, K. A., & Tin, T. (2012). Continental governance and environmental management mechanisms under the Antarctic Treaty System: Sufficient for the biodiversity challenges of this century? Biodiversity, 13, 1–15.  https://doi.org/10.1080/14888386.2012.703551.CrossRefGoogle Scholar
  34. Cook, A. J., Fox, A. J., Vaughan, D. G., et al. (2005). Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science, 308, 541–544.CrossRefGoogle Scholar
  35. Cowan, D. A., & Ah Tow, L. (2004). Endangered Antarctic environments. Annual Review of Microbiology, 58, 649–690.CrossRefGoogle Scholar
  36. Cowan, D. A., Khan, N., Heath, C., et al. (2010). Microbiology of Antarctic terrestrial soils and rocks. In A. K. Bej, J. Aislabie, & R. M. Atlas (Eds.), Polar microbiology: The ecology, biodiversity and bioremediation potential of microorganisms in extremely cold environments (pp. 1–29). Boca Raton: Taylor & Francis.Google Scholar
  37. Cowan, D. A., Sohm, J. A., Makhalanyane, T. P., et al. (2011). Hypolithic communities: Important nitrogen sources in Antarctic desert soils. Environmental Microbiology Reports, 3, 581–586.  https://doi.org/10.1111/j.1758-2229.2011.00266.x.CrossRefPubMedGoogle Scholar
  38. Cowan, D. A., Makhalanyane, T. P., Dennis, P. G., et al. (2014). Microbial ecology and biogeochemistry of continental Antarctic soils. Frontiers in Microbiology, 5, 154.  https://doi.org/10.3389/fmicb.2014.00154.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Curtosi, A., Pelletier, E., Vodopivez, C. L., et al. (2007). Polycyclic aromatic hydrocarbons in soil and surface marine sediment near Jubany Station (Antarctica). Role of permafrost as a low-permeability barrier. Science of the Total Environment, 383, 193–204.CrossRefGoogle Scholar
  40. Curtosi, A., Pelletier, E., Vodopivez, C., et al. (2010). Presence and distribution of persistent toxic substances in sediments and marine organisms of Potter Cove, Antarctica. Archives of Environmental Contamination and Toxicology, 59, 582–592.  https://doi.org/10.1007/s00244-010-9509-2.CrossRefPubMedGoogle Scholar
  41. Cury, J., Jurelevicius, D. A., Villela, H. D. M., et al. (2015). Microbial diversity and hydrocarbon depletion in low and high diesel-polluted soil samples from Keller Peninsula, South Shetland Islands. Antarctic Science, 27, 263–273.CrossRefGoogle Scholar
  42. Dauner, A. L. L., Hernandez, E. A., Mac Cormack, W. P., et al. (2015). Molecular characterization of anthropogenic sources of sedimentary organic matter from Potter Cove, King George Island, Antarctica. Science of the Total Environment, 502, 408–416.CrossRefGoogle Scholar
  43. Day, T. A., Ruhland, C. T., Grobe, C. W., et al. (1999). Growth and reproduction of Antarctic vascular plants in response to warming and UV-B radiation reduction in the field. Oecologia, 119, 24–35.CrossRefGoogle Scholar
  44. de Lorenzo, V. (2008). Systems biology approaches to bioremediation. Current Opinion in Biotechnology, 19, 579–589.  https://doi.org/10.1016/j.copbio.2008.10.004.CrossRefPubMedGoogle Scholar
  45. de Lorenzo, V. (2010). Genes that move the window of viability of life: Lessons from bacteria thriving at the cold extreme. BioEssays, 33, 38–42.CrossRefGoogle Scholar
  46. de Lorenzo, V., Pieper, D., & Ramos, J. L. (2013). From the test tube to the environment – And back. Environmental Microbiology, 15, 6–11.  https://doi.org/10.1111/j.1462-2920.2012.02896.x.CrossRefPubMedGoogle Scholar
  47. De Maayer, P., Anderson, D., Cary, C., et al. (2014). Some like it cold: Understanding the survival strategies of psychrophiles. EMBO Reports, 15, 508–517.  https://doi.org/10.1002/embr.201338170.CrossRefPubMedPubMedCentralGoogle Scholar
  48. de Pascale, D., de Santi, C., Fu, J., et al. (2012). The microbial diversity of polar environments is a fertile ground for bioprospecting. Marine Genomics, 8, 15–22.CrossRefGoogle Scholar
  49. de Sousa, S. T. P., Cabral, L., Vieira Lacera, G., Jr., et al. (2017). Diversity of aromatic hydroxylating dioxygenase genes in mangrove microbiome and their biogeographic patterns across global sites. Microbiology Open, 6(4), e00490.  https://doi.org/10.1002/mbo3.490.CrossRefGoogle Scholar
  50. Delille, D., & Coulon, F. (2008). Comparative mesocosm study of biostimulation efficiency in two different oil-amended sub-Antarctic soils. Microbial Ecology, 56, 243–252.  https://doi.org/10.1007/s00248-007-9341-z.CrossRefPubMedGoogle Scholar
  51. Delille, D., & Pelletier, E. (2002). Natural attenuation of diesel-oil contamination in a subantarctic soil (Crozet Island). Polar Biology, 25, 682–687.Google Scholar
  52. Delille, D., Pelletier, D., & Rodriguez-Blanco, A. (2009). Effects of nutrient and temperature on degradation of petroleum hydrocarbons in sub-Antarctic coastal seawater. Polar Biology, 32, 1521–1528.  https://doi.org/10.1007/s00300-009-0652-z.CrossRefGoogle Scholar
  53. Dennis, J. J., & Zylstra, G. J. (2004). Complete sequence and genetic organization of pDTG1, the 83 kilobase naphthalene degradation plasmid from Pseudomonas putida strain. NCIB 9816-4. Journal of Molecular Biology, 13, 753–768.CrossRefGoogle Scholar
  54. Dias, R. L., Ruberto, L., Hernández, E., et al. (2012). Bioremediation of an aged diesel oil-contaminated Antarctic soil: Evaluation of the on-site biostimulation strategy using different nutrient sources. International Biodeterioration and Biodegradation, 75, 96–103.  https://doi.org/10.1016/j.ibiod.2012.07.020.CrossRefGoogle Scholar
  55. Dias, R. L., Ruberto, L., Calabró, A., et al. (2015). Hydrocarbon removal and bacterial community structure in on-site biostimulated biopile systems designed for bioremediation of diesel contaminated Antarctic soil. Polar Biology, 38, 677–687.CrossRefGoogle Scholar
  56. Dvořák, P., Nikel, P. I., Damborský, J., et al. (2017). Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology. Biotechnology Advances, 35, 845–866.  https://doi.org/10.1016/j.biotechadv.2017.08.001.CrossRefPubMedGoogle Scholar
  57. Ferrari, B. C., Winsley, T., Gillings, M., et al. (2008). Cultivating previously uncultured soil bacteria using a soil substrate membrane system. Nature Protocols, 3, 1261–1269.  https://doi.org/10.1038/nprot.2008.102.CrossRefPubMedGoogle Scholar
  58. Festa, S., Coppotelli, B. M., & Morelli, I. S. (2016). Comparative bioaugmentation with a consortium and a single strain in a phenanthrene-contaminated soil: Impact on the bacterial community and biodegradation. Applied Soil Ecology, 98, 8–19.CrossRefGoogle Scholar
  59. Flocco, C. G., & Giulietti, A. M. (2007). In vitro hairy root cultures as a tool for phytoremediation research. In N. Willey (Ed.), Phytoremediation, Methods in Biotechnology (Vol. 23, pp. 161–173). Totowa: Humana Press.  https://doi.org/10.1007/978-1-59745-098-0_14.CrossRefGoogle Scholar
  60. Flocco, C. G., Lobalbo, A., Carranza, M. P., et al. (2002). Some physiological, microbial, and toxicological aspects of the removal of phenanthrene by hydroponic cultures of alfalfa (Medicago sativa L.). International Journal of Phytoremediation, 4, 169–186.  https://doi.org/10.1080/15226510208500081.CrossRefGoogle Scholar
  61. Flocco, C. G., Gomes, N. C., Mac Cormack, W., et al. (2009). Occurrence and diversity of naphthalene dioxygenase genes in soil microbial communities from the Maritime Antarctic. Environmental Microbiology, 11, 700–714.  https://doi.org/10.1111/j.1462-2920.2008.01858.x.CrossRefPubMedGoogle Scholar
  62. Frenot, Y., Chown, S. L., Whinam, J., et al. (2005). Biological invasions in the Antarctic: Extent, impacts and implications. Biological Reviews, 80, 45–72.CrossRefGoogle Scholar
  63. Fry, J. (2004). Culture-dependent microbiology. In A. Bull (Ed.), Microbial diversity and bioprospecting (pp. 80–87). Washington, DC: ASM Press.  https://doi.org/10.1128/9781555817770.ch8.CrossRefGoogle Scholar
  64. Gao, Y., Yang, Y., Ling, W., et al. (2011). Gradient distribution of root exudates and polycyclic aromatic hydrocarbons in rhizosphere soil. Soil Science Society of America Journal, 75, 1694–1703.CrossRefGoogle Scholar
  65. Godinho, V. M., Furbino, L. E., Santiago, I. F., et al. (2013). Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. The ISME Journal, 7, 1434–1451.  https://doi.org/10.1038/ismej.2013.77.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Goerke, H., Weber, K., Bornemann, H., et al. (2004). Increasing levels and biomagnification of persistent organic pollutants (POPs) in Antarctic biota. Marine Pollution Bulletin, 48, 295–302.CrossRefGoogle Scholar
  67. Gomes, N. C. M., Borges, L. R., Paranhos, R., et al. (2007). Diversity of ndo genes in mangrove sediments exposed to different sources of polycyclic aromatic hydrocarbon pollution. Applied and Environmental Microbiology, 73, 7392–7399.CrossRefGoogle Scholar
  68. Gomes, N. C. M., Flocco, C. G., Costa, R., et al. (2010). Mangrove microniches determine the structural and functional diversity of enriched petroleum hydrocarbon-degrading consortia. FEMS Microbiology Ecology, 74, 276–290.  https://doi.org/10.1111/j.1574-6941.2010.00962.x.CrossRefPubMedGoogle Scholar
  69. Gran-Scheuch, A., Fuentes, E., Bravo, D. M., et al. (2017). Isolation and characterization of phenanthrene degrading bacteria from diesel fuel-contaminated Antarctic soils. Frontiers in Microbiology, 8, 1634.  https://doi.org/10.3389/fmicb.2017.01634.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Heuer, H., & Smalla, K. (2012). Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiology Reviews, 36, 1083–1104.  https://doi.org/10.1111/j.1574-6976.2012.00337.x.CrossRefPubMedGoogle Scholar
  71. Horowitz, N. H., Bauman, A. J., Cameron, R. E., et al. (1969). Sterile soil from Antarctica: Organic analysis. Science, 164, 1054–1056.CrossRefGoogle Scholar
  72. Horowitz, N. H., Cameron, R. E., & Hubbard, J. S. (1972). Microbiology of the Dry Valleys of Antarctica. Science, 176, 242–245.CrossRefGoogle Scholar
  73. Howard-Williams, C., Hawes, I., & Gordon, S. (2010). The environmental basis of ecosystem variability in Antarctica: Research in the Latitudinal Gradient Project. Antarctic Science, 22, 591–602.  https://doi.org/10.1017/S0954102010000829.CrossRefGoogle Scholar
  74. Hughes, K. A., & Bridge, P. D. (2010a). Tolerance of Antarctic soil fungi to hydrocarbons and their potential role in soil bioremediation. In A. K. Bej, J. Aislabie, & R. M. Atlas (Eds.), Polar microbiology: The ecology, biodiversity and bioremediation potential of microorganisms in extremely cold environments (pp. 277–300). Boca Raton: Taylor & Francis.Google Scholar
  75. Hughes, K. A., & Bridge, P. D. (2010b). Potential impacts of bioprospecting and associated commercial activities upon Antarctic science and scientists. Ethics in Science and Environmental Politics, 10, 13–18.CrossRefGoogle Scholar
  76. Hughes, K. A., Cowan, D. A., & Wilmotte, A. (2015). Protection of Antarctic microbial communities – ‘out of sight, out of mind’. Frontiers in Microbiology, 6, 151.  https://doi.org/10.3389/fmicb.2015.00151.CrossRefPubMedPubMedCentralGoogle Scholar
  77. IAATO: International Association for Antarctic Tour Operations. (2017). IAATO tourism statistics. Available via: https://iaato.org/de/tourism-statistics. Accessed 21 Feb 2018.
  78. Jabour, J. (2009). National Antarctic programs and their impact on the environment. In K. R. Kerry & M. J. Riddle (Eds.), Health of Antarctic wildlife. A challenge for science and policy (pp. 2211–2229). Berlin: Springer.Google Scholar
  79. Janssen, P. H. (2006). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Applied and Environmental Microbiology, 72, 1719–1728.CrossRefGoogle Scholar
  80. Jørgensen, T. S., Kiil, A. S., Hansen, M. A., et al. (2015). Current strategies for mobilome research. Frontiers in Microbiology, 22, 750.  https://doi.org/10.3389/fmicb.2014.00750.CrossRefGoogle Scholar
  81. Jun, S. R., Wassenaar, T. M., Nookaew, I., et al. (2015). Diversity of Pseudomonas genomes, including Populus associated isolates, as revealed by comparative genome analysis. Applied and Environmental Microbiology, 82, 375–383.  https://doi.org/10.1128/AEM.02612-15.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Jurelevicius, D., Alvarez, V. M., Peixoto, R., et al. (2012). Bacterial polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases (PAH-RHD) encoding genes in different soils from King George Bay, Antarctic Peninsula. Applied Soil Ecology, 55, 1–9.CrossRefGoogle Scholar
  83. Kobori, H., Sullivan, C. V., & Shizuya, H. (1984). Bacterial plasmids in Antarctic natural microbial assemblages. Applied Environmental Microbiology, 48, 515–518.PubMedGoogle Scholar
  84. Kriwoken, L. K., & Rootes, D. (2000). Tourism on ice: Environmental impact assessment of Antarctic tourism. Impact Assessment and Project Appraisal, 18, 138–150.CrossRefGoogle Scholar
  85. Ladino-Orjuela G, Gomes E, da Silva R et al (2016) Metabolic pathways for degradation of aromatic hydrocarbons by bacteria. In: de Voogt W (ed) Reviews of environmental contamination and toxicology, 237. Springer, Cham, 105–121Google Scholar
  86. Lewis Smith RI (2003) The enigma of Colobanthus quitensis and Deschampsia antarctica in Antarctica. Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ. Antarctic biology in a global context. Backhuys Publishers, Leiden, 234–239.Google Scholar
  87. Li, S., Zhao, H., Li, Y., et al. (2012). Complete genome sequence of the naphthalene-degrading Pseudomonas putida strain ND6. Journal of Bacteriology, 194, 5154–5155.  https://doi.org/10.1128/JB.01190-12.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Logares, R., Haverkamp, T. H., Kumar, S., et al. (2012). Environmental microbiology through the lens of high-throughput DNA sequencing: Synopsis of current platforms and bioinformatics approaches. Journal of Microbiological Methods, 91, 106–113.  https://doi.org/10.1016/j.mimet.2012.07.017.CrossRefPubMedGoogle Scholar
  89. Lohan, D., & Johnston, S. (2005). United Nations University – Institute of Advanced Studies (UNU-IAS) report. Bioprospecting in Antarctica. Available via: www.ias.unu.edu/binaries2/antarctic_bioprospecting.pdf. Accessed 8 Feb 2018.
  90. Luz, P. A., Kuhn, E., & Pellizari, V. H. (2010). Occurrence, distribution and nature of hydrocarbon-degrading genes in bio degradative microorganisms from the Antarctic environment. In A. K. Bej, J. Aislabie, & R. M. Atlas (Eds.), Polar microbiology: The ecology, biodiversity and bioremediation potential of microorganisms in extremely cold environments (pp. 339–355). Boca Raton: Taylor & Francis.Google Scholar
  91. Ma, Y., Wang, L., & Shao, Z. (2006). Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer. Environmental Microbiology, 8, 455–465.CrossRefGoogle Scholar
  92. Marmiroli, N., Marmiroli, M., & Maestri, E. (2006). Phytoremediation and phytotechnologies: A review for the present and the future. In I. Twardowska, H. E. Allen, M. M. Häggblom, & S. Stefaniak (Eds.), Soil and water pollution monitoring, protection and remediation, NATO Science Series (Vol. 69, pp. 403–416). Dordrecht: Springer.CrossRefGoogle Scholar
  93. Martín-Español, A., Zammit-Mangion, A., Clarke, P. J., et al. (2016). Spatial and temporal Antarctic ice sheet mass trends, glacio-isostatic adjustment, and surface processes from a joint inversion of satellite altimeter, gravity, and GPS data. Journal of Geophysical Research – Earth Surface, 121, 182–200.CrossRefGoogle Scholar
  94. Martínez Alvarez, L. M., Lo Balbo, A., Mac Cormack, W. P., et al. (2015). Bioremediation of a hydrocarbon contaminated Antarctic soil: Optimization of a biostimulation strategy using response-surface methodology (RSM). Cold Regions Science and Technology, 119, 61–67.  https://doi.org/10.1016/j.coldregions.2015.07.005.CrossRefGoogle Scholar
  95. Martínez Álvarez, L. M., Ruberto, L. A. M., Balbo, L., et al. (2017). Bioremediation of hydrocarbon-contaminated soils in cold regions: Development of a pre-optimized biostimulation biopile-scale field assay in Antarctica. Science of the Total Environment, 590–591, 194–203.  https://doi.org/10.1016/j.scitotenv.2017.02.204.CrossRefPubMedGoogle Scholar
  96. Martínez-Rosales, C., Fullana, N., Musto, H., et al. (2012). Antarctic DNA moving forward: Genomic plasticity and biotechnological potential. FEMS Microbiology Letters, 331, 1–9.  https://doi.org/10.1111/j.1574-6968.2012.02531.x.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Martins, C. C., Bícego, M. C., Taniguchi, S., et al. (2004). Aliphatic and polycyclic aromatic hydrocarbons in surface sediments in Admiralty Bay, King George Island, Antarctica. Antarctic Science, 16, 117–122.CrossRefGoogle Scholar
  98. Martorell, M. M., Ruberto, L. A. M., Fernández, P. M., et al. (2017). Bioprospection of cold-adapted yeasts with biotechnological potential from Antarctica. Journal of Basic Microbiology, 57, 504–516.  https://doi.org/10.1002/jobm.201700021.CrossRefPubMedGoogle Scholar
  99. Mazzera, D., Hayes, T., Lowenthal, D., et al. (1999). Quantification of polycyclic aromatic hydrocarbons in soil at McMurdo Station, Antarctica. Science of the Total Environment, 229, 65–71.CrossRefGoogle Scholar
  100. Mrozik, A., & Piotrowska-Seget, Z. (2010). Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiological Research, 165, 363–375.CrossRefGoogle Scholar
  101. Musumeci, M. A., Lozada, M., Rial, D. V., et al. (2017). Prospecting biotechnologically-relevant monooxygenases from cold sediment metagenomes: An in silico approach. Marine Drugs, 15, 114.  https://doi.org/10.3390/md15040114.CrossRefPubMedCentralGoogle Scholar
  102. Nam, J. W., Nojiri, H., Yoshida, T., et al. (2001). New classification system for oxygenase components involved in ring-hydroxylating oxygenations. Bioscience, Biotechnology, and Biochemistry, 65, 254–263.CrossRefGoogle Scholar
  103. Nikel, P. I., Chavarría, M., Danchin, A., et al. (2016). From dirt to industrial applications: Pseudomonas putida as a synthetic biology chassis for hosting harsh biochemical reactions. Current Opinion in Chemical Biology, 34, 20–29.  https://doi.org/10.1016/j.cbpa.2016.05.011.CrossRefPubMedGoogle Scholar
  104. Olaniran, A. O., Balgobind, A., & Pillay, B. (2013). Bioavailability of heavy metals in soil: Impact on microbial biodegradation of organic compounds and possible improvement strategies. International Journal of Molecular Sciences, 14, 10197–10228.  https://doi.org/10.3390/ijms140510197.CrossRefPubMedPubMedCentralGoogle Scholar
  105. Pandey, K. D., Shukla, S. P., Shukla, P. N., et al. (2004). Cyanobacteria in Antarctica: Ecology, physiology and cold adaptation. Cellular and Molecular Biology (Noisy-le-Grand, France), 50, 575–584.Google Scholar
  106. Pasotti, F., Saravia, L. A., De Troch, M., et al. (2015). Benthic trophic interactions in an Antarctic shallow water ecosystem affected by recent glacier retreat. PLoS One, 10(11), e0141742.  https://doi.org/10.1371/journal.pone.0141742.CrossRefPubMedPubMedCentralGoogle Scholar
  107. Payne, S. J., King, C., Marcus Zamora, L., et al. (2014). Temporal changes in the sensitivity of coastal Antarctic zooplankton communities to diesel fuel: A comparison between single- and multi-species toxicity tests. Environmental Toxicology and Chemistry, 33, 882–890.CrossRefGoogle Scholar
  108. Peeters, K., Ertz, D., & Willems, A. (2011a). Culturable bacterial diversity at the Princess Elisabeth Station (Utsteinen, Sør Rondane Mountains, East Antarctica) harbours many new taxa. Systematic and Applied Microbiology, 34, 360–367.  https://doi.org/10.1016/j.syapm.2011.02.002.CrossRefPubMedGoogle Scholar
  109. Peeters, K., Hodgson, D. A., Convey, P., et al. (2011b). Culturable diversity of heterotrophic bacteria in Forlidas Pond (Pensacola Mountains) and Lundström Lake (Shackleton Range), Antarctica. Microbial Ecology, 62, 399–413.  https://doi.org/10.1007/s00248-011-9842-7.CrossRefPubMedGoogle Scholar
  110. Phale, P. S., Paliwal, V., & Raju, S. C. (2013). Genome sequence of naphthalene-degrading soil bacterium Pseudomonas putida CSV86. Genome Announcements, 1, 1.  https://doi.org/10.1128/genomeA.00234-12.CrossRefGoogle Scholar
  111. Poland, J. S., Riddle, M. J., & Zeeb, B. A. (2003). Contaminants in the Arctic and the Antarctic: A comparison of sources, impacts, and remediation options. Polar Record, 39, 369–383.CrossRefGoogle Scholar
  112. Pudasaini, S., Wilson, J., & Ji, M. (2017). Microbial diversity of Browning Peninsula, Eastern Antarctica revealed using molecular and cultivation methods. Frontiers in Microbiology, 8, 591.  https://doi.org/10.3389/fmicb.2017.00591.CrossRefPubMedPubMedCentralGoogle Scholar
  113. Pulicherla, K., Mrinimoy, G., Suresh Kumar, P., et al. (2011). Psychrozymes – The next generation industrial enzymes. Journal of Marine Science: Research and Development, 1, 102.  https://doi.org/10.4172/2155-9910.1000102.CrossRefGoogle Scholar
  114. Quartino, M. L., Deregibus, D., Campana, G. L., et al. (2013). Evidence of macroalgal colonization on newly ice-free areas following glacial retreat in Potter Cove (South Shetland Islands), Antarctica. PLoS One, 8(3), e58223.  https://doi.org/10.1371/journal.pone.0058223.CrossRefPubMedPubMedCentralGoogle Scholar
  115. Quartino, M. L., Vazquez, S. C., Latorre, G. E., et al. (2015). Possible role of bacteria in the degradation of macro algae Desmarestia anceps Montagne (Phaeophyceae) in Antarctic marine waters. Revista Argentina de Microbiología, 473, 274–276.  https://doi.org/10.1016/j.ram.2015.04.003.CrossRefGoogle Scholar
  116. Ruberto, L., Vazquez, S. C., & Mac Cormack, W. P. (2003). Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated Antarctic soil. International Biodeterioration and Biodegradation, 52, 115–125.  https://doi.org/10.1016/S0964-8305(03)00048-9.CrossRefGoogle Scholar
  117. Ruberto, L. A. M., Vazquez, S. C., LoBalbo, A., et al. (2005). Psychrotolerant hydrocarbon-degrading Rhodococcus strains isolated from polluted Antarctic soils. Antarctic Science, 17, 47–56.CrossRefGoogle Scholar
  118. Ruberto, L. A. M., Vazquez, S. C., Curtosi, A., et al. (2006). Phenanthrene biodegradation in soils using an Antarctic bacterial consortium. Bioremediation Journal, 10, 191–201.  https://doi.org/10.1080/10889860601021449.CrossRefGoogle Scholar
  119. Ruberto, L., Dias, R., Vazquez, S. C., et al. (2008). Small-scale studies on biodegradation of hydrocarbons in acutely-contaminated Antarctic soils. Reports on Polar and Marine Research, 571, 340–347 TXT W2.Google Scholar
  120. Ruberto, L., Dias, R., Lo Balbo, A., et al. (2009a). Influence of nutrients addition and bioaugmentation on the hydrocarbon biodegradation of a chronically contaminated Antarctic soil. Journal of Applied Microbiology, 106, 101–110.CrossRefGoogle Scholar
  121. Ruberto, L. A. M., Vazquez, S. C., & Mac Cormack, W. P. (2009b). Bacterial hydrocarbon-degrading consortium from Antarctic soils. Revista Argentina de Microbiología, 41, 262.PubMedGoogle Scholar
  122. Ruberto, L., Vazquez, S. C., Dias, R. L., et al. (2010). Small-scale studies toward a rational use of bioaugmentation in an Antarctic hydrocarbon-contaminated soil. Antarctic Science, 22, 463–469.  https://doi.org/10.1017/S0954102010000295.CrossRefGoogle Scholar
  123. Schreiter, S., Eltlbany, N., & Smalla, K. (2015). Microbial communities in the rhizosphere analyzed by cultivation-independent DNA-based methods. In B. Lugtenberg (Ed.), Principles of plant-microbe interactions (pp. 289–298). Cham: Springer.Google Scholar
  124. Seefeldt, M. A., Campana, G. L., Deregibus, D., et al. (2017). Different feeding strategies in Antarctic scavenging amphipods and their implications for colonisation success in times of retreating glaciers. Frontiers in Zoology, 14, 59.  https://doi.org/10.1186/s12983-017-0248-3.CrossRefPubMedPubMedCentralGoogle Scholar
  125. Shivaji, S., & Reddy, G. S. N. (2010). Bacterial diversity of Antarctica. Conventional polyphasic and rRNA approaches. In A. K. Bej, J. Aislabie, & R. M. Atlas (Eds.), Polar microbiology: The ecology, biodiversity and bioremediation potential of microorganisms in extremely cold environments (pp. 215–230). Boca Raton: Taylor & Francis.Google Scholar
  126. Shukor, M. Y., Hassan, N. A. A., Jusoh, A. Z., et al. (2009). Isolation and characterization of a Pseudomonas diesel-degrading strain from Antarctica. Journal of Environmental Biology, 30, 1–6.PubMedGoogle Scholar
  127. Shuttleworth, K. L., & Cerniglia, C. E. (1995). Environmental aspects of PAH biodegradation. Applied Biochemistry and Biotechnology, 1–3, 291–302.CrossRefGoogle Scholar
  128. Siciliano, S. D., Germida, J. J., Banks, K., et al. (2003). Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. Applied and Environmental Microbiology, 69, 483–489.  https://doi.org/10.1128/AEM.69.1.483-489.2003.CrossRefPubMedPubMedCentralGoogle Scholar
  129. Smalla, K. (2004). Culture-independent microbiology. In A. Bull (Ed.), Microbial diversity and bioprospecting (pp. 88–99). Washington, DC: ASM Press.  https://doi.org/10.1128/9781555817770.ch9.CrossRefGoogle Scholar
  130. Smalla, K., Jechalke, S., & Top, E. M. (2015). Plasmid detection, characterization, and ecology. Microbiology Spectrum, 1, PLAS-0038-2014.  https://doi.org/10.1128/microbiolspec.CrossRefGoogle Scholar
  131. Smith, J. J., Ah Tow, L., Stafford, W., et al. (2006). Bacterial diversity in three different Antarctic Cold Desert mineral soils. Microbial Ecology, 51, 413–421.CrossRefGoogle Scholar
  132. Sota, M., Yano, H., Ono, A., et al. (2006). Genomic and functional analysis of the IncP-9 naphthalene-catabolic plasmid NAH7 and its transposon Tn4655 suggests catabolic gene spread by a tyrosine recombinase. Journal of Bacteriology, 188, 4057–4067.CrossRefGoogle Scholar
  133. Stallwood, B., Shears, J., Williams, P. A., et al. (2005). Low temperature bioremediation of oil-contaminated soil using biostimulation and bioaugmentation with a Pseudomonas sp. from maritime Antarctica. Journal of Applied Microbiology, 99, 794–802.  https://doi.org/10.1111/j.1365-2672.2005.02678.x.CrossRefPubMedGoogle Scholar
  134. Stomeo, F., Makhalanyane, T. P., Valverde, A., et al. (2012). Abiotic factors influence microbial diversity in permanently cold soil horizons of a maritime-associated Antarctic Dry Valley. FEMS Microbiology Ecology, 82, 326–340.  https://doi.org/10.1111/j.1574-6941.2012.01360.x.CrossRefPubMedGoogle Scholar
  135. Sutton, N. B., Maphosa, F., Morillo, J. A., et al. (2013). Impact of long-term diesel contamination on soil microbial community structure. Applied and Environmental Microbiology, 79, 619–630.  https://doi.org/10.1128/AEM.02747-2712.CrossRefPubMedPubMedCentralGoogle Scholar
  136. Teixeira, L. C., Peixoto, R. S., Cury, J. C., et al. (2010). Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, Maritime Antarctica. The ISME Journal, 4, 989–1001.  https://doi.org/10.1038/ismej.2010.35.CrossRefPubMedGoogle Scholar
  137. Terauds, A., & Lee, R. (2016). Antarctic biogeography revisited: Updating the Antarctic Conservation Biogeographic Regions. Diversity and Distributions, 1–5. doi: https://doi.org/10.4225/15/5729930925224.
  138. Thomas, C. M., & Haines, A. S. (2004). Plasmids of the genus Pseudomonas. In J.-L. Ramos (Ed.), Pseudomonas (pp. 197–231). London: Kluwer/Plenum.CrossRefGoogle Scholar
  139. Thomassin-Lacroix, E. J. M., Eriksson, M., Reimer, K. J., et al. (2002). Biostimulation and bioaugmentation for on-site treatment of weathered diesel fuel in Arctic soil. Applied Microbiology and Biotechnology, 59, 551–556.  https://doi.org/10.1007/s00253-002-1038-0.CrossRefPubMedGoogle Scholar
  140. Thompson, L. R., Sanders, J. G., McDonald, D., et al. (2017). A communal catalogue reveals Earth’s multiscale microbial diversity. Nature, 551, 457–463.  https://doi.org/10.1038/nature24621.CrossRefPubMedPubMedCentralGoogle Scholar
  141. Tian, Y., Li, Y.-L., & Zhao, F.-C. (2017). Secondary metabolites from polar organisms. Marine Drugs, 15, 28.  https://doi.org/10.3390/md15030028.CrossRefPubMedCentralGoogle Scholar
  142. Tin, T., Fleming, Z. L., Hughes, D. G., et al. (2009). Impacts of local human activities on the Antarctic environment. Antarctic Science, 21, 3–33.CrossRefGoogle Scholar
  143. Tindall, B. J. (2004). Prokaryotic diversity in the Antarctic: The tip of the iceberg. Microbial Ecology, 47, 271–283.CrossRefGoogle Scholar
  144. Tribelli, P. M., Di Martino, C., Lopez, N. I., et al. (2012). Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis. Biodegradation, 23, 645–651.CrossRefGoogle Scholar
  145. Turner, J., Bindschadler, R., Convey, P., et al. (2010). Antarctic climate change and the environment. A contribution to the International Polar Year 2007–2008. Scientific Committee Antarctic Research (SCAR). Available via: http://acce.scar.org/wiki/Antarctic_Climate_Change_and_the_Environment. Accessed 8 Feb 2018.
  146. Tyagi, M., da Fonseca, M. M. R., & de Carvalho, C. C. C. R. (2010). Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 22, 231–241.  https://doi.org/10.1007/s10532-010-9394-4.CrossRefPubMedGoogle Scholar
  147. van Beilen, J. B., & Funhoff, E. G. (2007). Alkane hydroxylases involved in microbial alkane degradation. Applied Microbiology and Biotechnology, 74, 13–21.  https://doi.org/10.1007/s00253-006-0748-0.CrossRefPubMedGoogle Scholar
  148. Vasileva-Tonkova, E., & Gesheva, V. (2005). Glycolipids produced by Antarctic Nocardioides sp. during growth on n-paraffin. Process Biochemistry, 40, 2387–2391.  https://doi.org/10.1016/j.procbio.2004.09.018.CrossRefGoogle Scholar
  149. Vasileva-Tonkova, E., & Gesheva, V. (2007). Biosurfactant production by antarctic facultative anaerobe Pantoea sp. during growth on hydrocarbons. Current Microbiology, 54, 136–141.  https://doi.org/10.1007/s00284-006-0345-6.CrossRefPubMedGoogle Scholar
  150. Vázquez, S. C., Coria, S. H., & Mac Cormack, W. P. (2004). Extracellular proteases from eight psychrotolerant Antarctic strains. Microbiological Research, 159, 157–166.CrossRefGoogle Scholar
  151. Vázquez, S., Nogales, B., Ruberto, L., et al. (2009). Bacterial community dynamics during bioremediation of diesel-oil contaminated Antarctic soil in a mesocosm assay. Microbial Ecology, 57, 598–610.CrossRefGoogle Scholar
  152. Vázquez, S., Nogales, B., Ruberto, L. C., et al. (2013). Characterization of bacterial consortia from diesel-contaminated Antarctic soils: Towards the design of tailored formulas for bioaugmentation. International Biodeterioration and Biodegradation, 77, 22–30.  https://doi.org/10.1016/j.ibiod.2012.11.002.CrossRefGoogle Scholar
  153. Vázquez, S., Monien, P., Pepino Minetti, R., et al. (2017). Bacterial communities and chemical parameters in soils and coastal sediments in response to diesel spills at Carlini Station, Antarctica. Science of the Total Environment, 15, 26–37.  https://doi.org/10.1016/j.scitotenv.2017.06.129.CrossRefGoogle Scholar
  154. Vergani, L., Mapelli, F., Zanardini, E., et al. (2017). Phyto-rhizoremediation of polychlorinated biphenyl contaminated soils: An outlook on plant-microbe beneficial interactions. Science of the Total Environment, 575, 1395–1406.  https://doi.org/10.1016/j.scitotenv.2016.09.218.CrossRefPubMedGoogle Scholar
  155. Vincent, W. F. (1988). Microbial ecosystems of Antarctica (p. 290). Cambridge: Cambridge University Press.  https://doi.org/10.1017/S0954102089220278.CrossRefGoogle Scholar
  156. Vincent, W. F. (2002). Cyanobacterial dominance in the polar regions. In B. A. Whitton & M. Potts (Eds.), The ecology of cyanobacteria: Their diversity in time and space (pp. 321–340). Berlin: Springer.CrossRefGoogle Scholar
  157. Vishniac, H. S. (1993). The microbiology of Antarctic soils. In E. I. Friedmann (Ed.), Antarctic microbiology (pp. 297–341). New York: Wiley-Liss.Google Scholar
  158. Wall, D. H. (2007). Implications of change: Above- and belowground biotic interactions in a low diversity ecosystem. Transactions of The Royal Society B Biological Sciences, 362, 2291–2306.  https://doi.org/10.1098/rstb.2006.1950.CrossRefGoogle Scholar
  159. Wynn-Williams, D. D. (1996). Antarctic microbial diversity: The basis of polar ecosystem processes. Biodiversity and Conservation, 5, 1271–1293.CrossRefGoogle Scholar
  160. Wyrwas, B., Chrzanowski, Ł., Ławniczak, Ł., et al. (2011). Utilization of Triton X-100 and polyethylene glycols during surfactant-mediated biodegradation of diesel fuel. Journal of Hazardous Materials, 197, 97–103.  https://doi.org/10.1016/j.jhazmat.2011.09.060.CrossRefPubMedGoogle Scholar
  161. Yang, S. Z., Jin, H. J., Wei, Z., et al. (2009). Bioremediation of oil spills in cold environments: A review. Pedosphere, 19, 371–381.CrossRefGoogle Scholar
  162. Yen, K. M., & Gunsalus, I. C. (1982). Plasmid gene organization: Naphthalene/salicylate oxidation. Proceedings of the National Academy of Sciences, 79, 874–878.CrossRefGoogle Scholar
  163. Yergeau, E. (2013). Fell-field soil microbiology. In D. A. Cowan (Ed.), Antarctic terrestrial microbiology: Physical and biological properties of Antarctic soils (pp. 115–129). Heidelberg: Springer.  https://doi.org/10.1007/978-3-642-45213-0_7.CrossRefGoogle Scholar
  164. Yergeau, E., Newsham, K. K., & Pearce, D. A. (2007). Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environmental Microbiology, 9, 2670–2682.CrossRefGoogle Scholar
  165. Yergeau, E., Bokhorst, S., Kang, S., et al. (2012). Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments. The ISME Journal, 6, 692702.  https://doi.org/10.1038/ismej.2011.124.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Cecilia G. Flocco
    • 1
    • 2
    • 3
  • Walter P. Mac Cormack
    • 2
    • 3
  • Kornelia Smalla
    • 1
  1. 1.Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated PlantsBraunschweigGermany
  2. 2.Instituto Antártico Argentino (IAA)Buenos AiresArgentina
  3. 3.Instituto de Nanobiotecnología (NANOBIOTEC)Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina

Personalised recommendations