Patterns of Microorganisms Inhabiting Antarctic Freshwater Lakes with Special Reference to Aquatic Moss Pillars

  • Ryosuke NakaiEmail author
  • Satoshi Imura
  • Takeshi Naganuma
Part of the Springer Polar Sciences book series (SPPS)


The Antarctic continent has ice-free areas with many freshwater lakes that support life. These lakes are generally ultra-oligotrophic and possess simplified food chains dominated by microorganisms with algal and cyanobacterial mats often occurring in the lake bottoms. In association with such mats, aquatic mosses sometimes form unique towerlike structures called “moss pillars.” Previous microflora analysis revealed the presence of several key groups (e.g., Leptolyngbya and Bradyrhizobium species) and uncultivated novel lineages in the pillars and the fact that the bacterial communities differ among the pillar sections. A wide range of eukaryotic phylotypes associated with algae, ciliates, fungi, nematodes, rotifers, and tardigrades, as well as unclassified phylotypes, were detected in the pillars. Moss pillars colonizing the nutrient-limited lakes are likely formed by a synergistic association of diverse organisms including both primary producers and decomposers. Indeed, a potential functional zonation, possibly reflected by different redox conditions within the pillar structure, was identified during the analyses of functional genes (e.g., CO2 fixation-coding genes). Interestingly, multiple sequences related to moss pillar-derived sequences were also observed in other Antarctic habitats. These findings provide clues toward solving a conundrum pertaining to Antarctic lake ecosystems: biomass-rich communities existing in the nutrient-poor conditions.


Antarctic lakes Freshwater Microbial mats Bacteria Eukaryotes Phylogenetic diversity 



Photo in Fig. 2.1 was taken during the 56th Japanese Antarctic Research Expedition (JARE-56). We thank Drs. Y. Takahashi and M. Yoshida for providing unpublished data for Fig. 2.5 and Dr. M. Tsujimoto for providing the micrograph for Fig. 2.6. The work on novel labyrinthulomycete lineages in the moss pillars was supported by the Sasakawa Scientific Research Grant (no. 29-726) from The Japan Science Society.


  1. Andersen, D. T., Sumner, D. Y., Hawes, I., Webster-Brown, J., & McKay, C. P. (2011). Discovery of large conical stromatolites in Lake Untersee, Antarctica. Geobiology, 9, 280–293.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Bass, D., Howe, A. T., Mylnikov, A. P., Vickerman, K., Chao, E. E., Edwards Smallbone, J., Snell, J., Cabral, C., & Cavalier-Smith, T. (2009). Phylogeny and classification of Cercomonadida (Protozoa, Cercozoa): Cercomonas, Eocercomonas, Paracercomonas, and Cavernomonas gen. nov. Protist, 160, 483–521.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bowman, J. P., McCammon, S. A., Rea, S. M., & McMeekin, T. A. (2000). The microbial composition of three limnologically disparate hypersaline Antarctic lakes. FEMS Microbiology Letters, 183, 81–88.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bremer, G. B. (1995). Lower marine fungi (labyrinthulomycetes) and the decay of mangrove leaf litter. Hydrobiologia, 295, 89–95.CrossRefGoogle Scholar
  5. Brown, C. T., Hug, L. A., Thomas, B. C., Sharon, I., Castelle, C. J., Singh, A., Wilkins, M. J., Wrighton, K. C., Williams, K. H., & Banfield, J. F. (2015). Unusual biology across a group comprising more than 15% of domain bacteria. Nature, 523, 208–211.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Casanueva, A., Tuffin, M., Cary, C., & Cowan, D. A. (2010). Molecular adaptations to psychrophily: The impact of ‘omic’ technologies. Trends in Microbiology, 18, 374–381.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Christner, B. C., Priscu, J. C., Achberger, A. M., Barbante, C., Carter, S. P., Christianson, K., Michaud, A. B., Mikucki, J. A., Mitchell, A. C., Skidmore, M. L., Vick-Majors, T. J., & Team, W. S. (2014). A microbial ecosystem beneath the West Antarctic ice sheet. Nature, 512, 310–313.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Creer, S., Deiner, K., Frey, S., Porazinska, D., Taberlet, P., Thomas, W. K., Potter, C., & Bik, H. M. (2016). The ecologist’s field guide to sequence-based identification of biodiversity. Methods in Ecology and Evolution, 7, 1008–1018.CrossRefGoogle Scholar
  9. Delgado, M. J., Bonnard, N., Tresierra-Ayala, A., Bedmar, E. J., & Müller, P. (2003). The Bradyrhizobium japonicum napEDABC genes encoding the periplasmic nitrate reductase are essential for nitrate respiration. Microbiology, 149, 3395–3403.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Dewel, R. A., Joines, J. D., & Bond, J. J. (1985). A new chytridiomycete parasitizing the tardigrade Milnesium tardigradum. Canadian Journal of Botany, 63, 1525–1534.CrossRefGoogle Scholar
  11. Dubilier, N., Bergin, C., & Lott, C. (2008). Symbiotic diversity in marine animals: The art of harnessing chemosynthesis. Nature Reviews Microbiology, 6, 725–740.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Dumack, K., Schuster, J., Bass, D., & Bonkowski, M. (2016). A novel lineage of ‘naked filose amoebae’; Kraken carinae gen. nov. sp. nov. (Cercozoa) with a remarkable locomotion by disassembly of its cell body. Protist, 167, 268–278.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Fernández-Valiente, E., Quesada, A., Howard-Williams, C., & Hawes, I. (2001). N2-fixation in cyanobacterial Mats from ponds on the McMurdo ice shelf, Antarctica. Microbial Ecology, 42, 338–349.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Finlay, B. J., Span, A. S. W., & Harman, J. M. P. (1983). Nitrate respiration in primitive eukaryotes. Nature, 303, 333–336.CrossRefGoogle Scholar
  15. Freeman, K. R., Martin, A. P., Karki, D., Lynch, R. C., Mitter, M. S., Meyer, A. F., Longcore, J. E., Simmons, D. R., & Schmidt, S. K. (2009). Evidence that chytrids dominate fungal communities in high-elevation soils. Proceedings of the National Academy of Sciences, 106, 18315–18320.CrossRefGoogle Scholar
  16. Gillieson, D., Burgess, J., Spate, A., & Cochrane, A. (1990). An atlas of the lakes of the Larsemann Hills, Princess Elizabeth Land, Antarctica. Kingston: The Publications Office, Australian Antarctic Division.Google Scholar
  17. Gleason, F. H., Kagami, M., Lefevre, E., & Sime-Ngando, T. (2008). The ecology of chytrids in aquatic ecosystems: Roles in food web dynamics. Fungal Biology Reviews, 22, 17–25.CrossRefGoogle Scholar
  18. Goldman, C. R., Mason, D. T., & Wood, B. J. B. (1963). Light injury and inhibition in Antarctic freshwater phytoplankton. Limnology and Oceanography, 8, 313–322.CrossRefGoogle Scholar
  19. Hodgson, D. A., Vyverman, W., Verleyen, E., Sabbe, K., Leavitt, P. R., Taton, A., Squier, A. H., & Keely, B. J. (2004). Environmental factors influencing the pigment composition of in situ benthic microbial communities in East Antarctic lakes. Aquatic Microbial Ecology, 37, 247–263.CrossRefGoogle Scholar
  20. Howard-Williams, C., Priscu, J. C., & Vincent, W. F. (1989). Nitrogen dynamics in two antarctic streams. Hydrobiologia, 172, 51–61.CrossRefGoogle Scholar
  21. Imura, S., Bando, T., Saito, S., Seto, K., & Kanda, H. (1999). Benthic moss pillars in Antarctic lakes. Polar Biology, 22, 137–140.CrossRefGoogle Scholar
  22. Imura, S., Takahashi, H., & Nakamura, T. (2000). Benthic moss pillars (Koke Bouzu) in Antarctic lakes–analysis of colonization and growth by 14C dating. Summary of Research using AMS Nagoya University, XI, 176–183 in Japanese with English abstract, table, and figures.Google Scholar
  23. Imura, S., Bando, T., Seto, K., Ohtani, S., Kudoh, S., & Kanda, H. (2003). Distribution of aquatic mosses in the Sôya coast region, East Antarctica. Polar Bioscience, 16, 1–10.Google Scholar
  24. James, S. R., Burton, H. R., McMeekin, T. A., & Mancuso, C. A. (1994). Seasonal abundance of Halomonas meridiana, Halomonas subglaciescola, Flavobacterium gondwanense and Flavobacterium salegens in four Antarctic lakes. Antarctic Science, 6, 325–332.CrossRefGoogle Scholar
  25. Jungblut, A. D., Vincent, W. F., & Lovejoy, C. (2012). Eukaryotes in Arctic and Antarctic cyanobacterial mats. FEMS Microbiology Ecology, 82, 416–428.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Kamp, A., Høgslund, S., Risgaard-Petersen, N., & Stief, P. (2015). Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes. Frontiers in Microbiology, 6, 1492.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Kantor, R. S., Wrighton, K. C., Handley, K. M., Sharon, I., Hug, L. A., Castelle, C. J., Thomas, B. C., & Banfield, J. F. (2013). Small genomes and sparse metabolisms of sediment-associated bacteria from four candidate phyla. MBio, 4, e00708–e00713.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Kato, K., Arikawa, T., Imura, S., & Kanda, H. (2013). Molecular identification and phylogeny of an aquatic moss species in Antarctic lakes. Polar Biology, 36, 1557–1568.CrossRefGoogle Scholar
  29. Kerters, K., De Vos, P., Gillis, M., Swings, J., Vandamme, P., & Stackebrandt, E. (2006). Introduction to the Proteobacteria. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), The prokaryotes, a handbook on the biology of bacteria, Proteobacteria: Alpha and Beta Subclasses (Vol. 5, pp. 3–37). New York: Springer.Google Scholar
  30. Kimura, S., Ban, S., Imura, S., Kudoh, S., & Matsuzaki, M. (2010). Limnological characteristics of vertical structure in the lakes of Syowa Oasis, East Antarctica. Polar Science, 3, 262–271.CrossRefGoogle Scholar
  31. Komárek, O., & Komárek, J. (2010). Diversity and ecology of cyanobacterial microflora of Antarctic seepage habitats: Comparison of King George Island, Shetland Islands, and James Ross Island, NW Weddell Sea, Antarctica. In J. Seckbach & A. Oren (Eds.), Microbial mats: Modern and ancient microorganisms in stratified systems (pp. 515–539). Dordrecht: Springer.CrossRefGoogle Scholar
  32. Kong, W., Ream, D. C., Priscu, J. C., & Morgan-Kiss, R. M. (2012). Diversity and expression of RuBisCO genes in a perennially ice-covered Antarctic lake during the polar night transition. Applied and Environmental Microbiology, 78, 4358–4366.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Kudoh, S., & Tanabe, Y. (2014). Limnology and ecology of lakes along the Sôya Coast, East Antarctica. Advances in Polar Science, 25, 75–91.Google Scholar
  34. Kudoh, S., Kashino, Y., & Imura, S. (2003a). Ecological studies of aquatic moss pillars in Antarctic lakes 3. Light response and chilling and heat sensitivity of photosynthesis. Polar Bioscience, 16, 33–42.Google Scholar
  35. Kudoh, S., Tsuchiya, Y., Ayukawa, E., Imura, S., & Kanda, H. (2003b). Ecological studies of aquatic moss pillars in Antarctic lakes 1. Macro structure and carbon, nitrogen and chlorophyll a contents. Polar Bioscience, 16, 11–22.Google Scholar
  36. Kudoh, S., Watanabe, K., & Imura, S. (2003c). Ecological studies of aquatic moss pillars in Antarctic lakes 2. Temperature and light environment at the moss habitat. Polar Bioscience, 16, 23–32.Google Scholar
  37. Kudoh, S., Tanabe, Y., Matsuzaki, M., & Imura, S. (2009). In situ photochemical activity of the phytobenthic communities in two Antarctic lakes. Polar Biology, 32, 1617–1627.CrossRefGoogle Scholar
  38. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Kwon, M., Kim, M., Takacs-Vesbach, C., Lee, J., Hong, S. G., Kim, S. J., Priscu, J. C., & Kim, O.-S. (2017). Niche specialization of bacteria in permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Environmental Microbiology, 19, 2258–2271.PubMedCrossRefGoogle Scholar
  40. Lauro, F. M., DeMaere, M. Z., Yau, S., Brown, M. V., Ng, C., Wilkins, D., Raftery, M. J., Gibson, J. A. E., Andrews-Pfannkoch, C., Lewis, M., Hoffman, J. M., Thomas, T., & Cavicchioli, R. (2010). An integrative study of a meromictic lake ecosystem in Antarctica. The ISME Journal, 5, 879–895.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Laybourn-Parry, J., & Wadham, J. L. (2014). Antarctic lakes. Oxford: Oxford University Press.CrossRefGoogle Scholar
  42. Lepo, J. E., Hanus, F. J., & Evans, H. J. (1980). Chemoautotrophic growth of hydrogen-uptake-positive strains of Rhizobium japonicum. Journal of Bacteriology, 141, 664–670.PubMedPubMedCentralGoogle Scholar
  43. Lizotte, M. P. (2008). Phytoplankton and primary production. In W. F. Vincent & J. Laybourn-Parry (Eds.), Polar lakes and rivers: Limnology of Arctic and Antarctic aquatic ecosystems (pp. 157–178). London: University Press.CrossRefGoogle Scholar
  44. López-Bueno, A., Tamames, J., Velázquez, D., Moya, A., Quesada, A., & Alcamí, A. (2009). High diversity of the viral community from an Antarctic Lake. Science, 326, 858–861.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Luef, B., Frischkorn, K. R., Wrighton, K. C., Holman, H.-Y. N., Birarda, G., Thomas, B. C., Singh, A., Williams, K. H., Siegerist, C. E., Tringe, S. G., Downing, K. H., Comolli, L. R., & Banfield, J. F. (2015). Diverse uncultivated ultra-small bacterial cells in groundwater. Nature Communications, 6, 6372.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Lynch, M. D. J., & Neufeld, J. D. (2015). Ecology and exploration of the rare biosphere. Nature Reviews Microbiology, 13, 217–229.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Lynch, M. D. J., Bartram, A. K., & Neufeld, J. D. (2012). Targeted recovery of novel phylogenetic diversity from next-generation sequence data. The ISME Journal, 6, 2067–2077.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Mareš, J., Hrouzek, P., Kaňa, R., Ventura, S., Strunecký, O., & Komárek, J. (2013). The primitive thylakoid-less cyanobacterium Gloeobacter is a common rock-dwelling organism. PLoS One, 8, e66323.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Mori, H., Maruyama, T., Yano, M., Yamada, T., & Kurokawa, K. (2018). VITCOMIC2: Visualization tool for the phylogenetic composition of microbial communities based on 16S rRNA gene amplicons and metagenomic shotgun sequencing. BMC Systems Biology, 12, 30.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Morris, D. P., Zagarese, H., Williamson, C. E., Balseiro, E. G., Hargreaves, B. R., Modenutti, B., Moeller, R., & Queimalinos, C. (1995). The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnology and Oceanography, 40, 1381–1391.CrossRefGoogle Scholar
  51. Mystikou, A., Peters, A. F., Asensi, A. O., Fletcher, K. I., Brickle, P., van West, P., Convey, P., & Küpper, F. C. (2014). Seaweed biodiversity in the South-Western Antarctic Peninsula: Surveying macroalgal community composition in the Adelaide Island/Marguerite Bay region over a 35-year time span. Polar Biology, 37, 1607–1619.CrossRefGoogle Scholar
  52. Nagano, N., Matsui, S., Kuramura, T., Taoka, Y., Honda, D., & Hayashi, M. (2011). The distribution of extracellular cellulase activity in marine eukaryotes, thraustochytrids. Marine Biotechnology, 13, 133–136.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Naganuma, T., Hua, P. N., Okamoto, T., Ban, S., Imura, S., & Kanda, H. (2005). Depth distribution of euryhaline halophilic bacteria in Suribati Ike, a meromictic lake in East Antarctica. Polar Biology, 28, 964–970.CrossRefGoogle Scholar
  54. Nakai, R., & Naganuma, T. (2015). Diversity and ecology of thraustochytrid protists in the marine environment. In S. Ohtsuka, T. Suzaki, T. Horiguchi, N. Suzuki, & F. Not (Eds.), Marine protists: Diversity and dynamics (pp. 331–346). Tokyo: Springer.CrossRefGoogle Scholar
  55. Nakai, R., Abe, T., Baba, T., Imura, S., Kagoshima, H., Kanda, H., Kanekiyo, A., Kohara, Y., Koi, A., Nakamura, K., Narita, T., Niki, H., Yanagihara, K., & Naganuma, T. (2012a). Microflorae of aquatic moss pillars in a freshwater lake, East Antarctica, based on fatty acid and 16S rRNA gene analyses. Polar Biology, 35, 425–433.CrossRefGoogle Scholar
  56. Nakai, R., Abe, T., Baba, T., Imura, S., Kagoshima, H., Kanda, H., Kohara, Y., Koi, A., Niki, H., Yanagihara, K., & Naganuma, T. (2012b). Eukaryotic phylotypes in aquatic moss pillars inhabiting a freshwater lake in East Antarctica, based on 18S rRNA gene analysis. Polar Biology, 35, 1495–1504.CrossRefGoogle Scholar
  57. Nakai, R., Abe, T., Baba, T., Imura, S., Kagoshima, H., Kanda, H., Kohara, Y., Koi, A., Niki, H., Yanagihara, K., & Naganuma, T. (2012c). Diversity of RuBisCO gene responsible for CO2 fixation in an Antarctic moss pillar. Polar Biology, 35, 1641–1650.CrossRefGoogle Scholar
  58. Nakai, R., Shibuya, E., Justel, A., Rico, E., Quesada, A., Kobayashi, F., Iwasaka, Y., Shi, G.-Y., Amano, Y., Iwatsuki, T., & Naganuma, T. (2013). Phylogeographic analysis of filterable bacteria with special reference to Rhizobiales strains that occur in cryospheric habitats. Antarctic Science, 25, 219–228.CrossRefGoogle Scholar
  59. Nelson, W., & Stegen, J. (2015). The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle. Frontiers in Microbiology, 6, 713.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Niederberger, T. D., McDonald, I. R., & Cary, S. C. (2012). Archaea. In R. V. Miller & L. G. Whyte (Eds.), Polar microbiology: Life in a deep freeze (pp. 32–61). Washington, DC: ASM Press.Google Scholar
  61. Paerl, H. W., & Pinckney, J. L. (1996a). A mini-review of microbial consortia: Their roles in aquatic production and biogeochemical cycling. Microbial Ecology, 31, 225–247.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Paerl, H. W., & Pinckney, J. L. (1996b). Ice aggregates as a microbial habitat in Lake Bonney, Dry Valley lakes, Antarctica: Nutrient-rich microzones in an oligotrophic ecosystem. Antarctic Journal of the United States, 31, 220–222.Google Scholar
  63. Paerl, H. W., Pinckney, J. L., & Steppe, T. F. (2000). Cyanobacterial–bacterial mat consortia: Examining the functional unit of microbial survival and growth in extreme environments. Environmental Microbiology, 2, 11–26.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Parker, B. C., Simmons, J. G. M., Love, F. G., Wharton, J. R. A., & Seaburg, K. G. (1981). Modern stromatolites in Antarctic Dry Valley lakes. Bioscience, 31, 656–661.CrossRefGoogle Scholar
  65. Petit, J. R., Alekhina, I., & Bulat, S. (2005). Lake Vostok, Antarctica: Exploring a subglacial lake and searching for life in an extreme environment. In M. Gargaud, B. Barbier, H. Martin, & J. Reisse (Eds.), Lectures in astrobiology (Vol. I, pp. 227–288). Berlin: Springer.CrossRefGoogle Scholar
  66. Petz, W., Valbonesi, A., Schiftner, U., Quesada, A., & Cynan Ellis-Evans, J. (2007). Ciliate biogeography in Antarctic and Arctic freshwater ecosystems: Endemism or global distribution of species? FEMS Microbiology Ecology, 59, 396–408.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Pienitz, R., Doran, P. T., & Lamoureux, S. F. (2008). Origin and geomorphology of lakes in the polar regions. In W. F. Vincent & J. Laybourn-Parry (Eds.), Polar lakes and rivers: Limnology of Arctic and Antarctic aquatic ecosystems (pp. 25–41). London: University Press.CrossRefGoogle Scholar
  68. Pope, P. B., Smith, W., Denman, S. E., Tringe, S. G., Barry, K., Hugenholtz, P., McSweeney, C. S., McHardy, A. C., & Morrison, M. (2011). Isolation of succinivibrionaceae implicated in low methane emissions from Tammar wallabies. Science, 333, 646–648.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Priscu, J. C., Adams, E. E., Lyons, W. B., Voytek, M. A., Mogk, D. W., Brown, R. L., McKay, C. P., Takacs, C. D., Welch, K. A., Wolf, C. F., Kirshtein, J. D., & Avci, R. (1999). Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science, 286, 2141–2144.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Quesada, A., & Vincent, W. F. (2012). Cyanobacteria in the cryosphere: Snow, ice and extreme cold. In B. A. Whitton (Ed.), Ecology of cyanobacteria II: Their diversity in space and time (pp. 387–399). Dordrecht: Springer.CrossRefGoogle Scholar
  71. Raghukumar, S. (2002). Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). European Journal of Protistology, 38, 127–145.CrossRefGoogle Scholar
  72. Roos, J. C., & Vincent, W. F. (1998). Temperature dependence of UV radiation effects on Antarctic cyanobacteria. Journal of Phycology, 34, 118–125.CrossRefGoogle Scholar
  73. Shivaji, S., & Reddy, G. S. N. (2010). Bacterial biodiversity of Antarctica: Conventional polyphasic and rRNA approaches. In A. K. Bej, J. Aislabie, & R. M. Atlas (Eds.), Polar microbiology: The ecology, biodiversity and bioremediation potential of microorganisms in extremely cold environments (pp. 61–93). Boca Raton: CRC Press.Google Scholar
  74. Siegert, M. J., Ross, N., & Le Brocq, A. M. (2016). Recent advances in understanding Antarctic subglacial lakes and hydrology. Philosophical Transactions of the Royal Society A, 374, 20140306.CrossRefGoogle Scholar
  75. Sohlenius, B., & Boström, S. (2005). The geographic distribution of metazoan microfauna on East Antarctic nunataks. Polar Biology, 28, 439–448.CrossRefGoogle Scholar
  76. Stingl, U., Cho, J. C., Foo, W., Vergin, K. L., Lanoil, B., & Giovannoni, S. J. (2008). Dilution-to-extinction culturing of psychrotolerant planktonic bacteria from permanently ice-covered lakes in the McMurdo Dry Valleys, Antarctica. Microbial Ecology, 55, 395–405.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Stokes, N. A., Calvo, L. M. R., Reece, K. S., & Burreson, E. M. (2002). Molecular diagnostics, field validation, and phylogenetic analysis of quahog parasite unknown (QPX), a pathogen of the hard clam Mercenaria mercenaria. Diseases of Aquatic Organisms, 52, 233–247.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Takahashi, Y., Yoshida, M., Inouye, I., & Watanabe, M. M. (2014). Diplophrys mutabilis sp. nov., a new member of Labyrinthulomycetes from freshwater habitats. Protist, 165, 50–65.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Takahashi, Y., Yoshida, M., Inouye, I., & Watanabe, M. M. (2016). Fibrophrys columna gen. nov., sp. nov: A member of the family Amphifilidae. European Journal of Protistology, 56, 41–50.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Tanabe, Y., Kudoh, S., Imura, S., & Fukuchi, M. (2008). Phytoplankton blooms under dim and cold conditions in freshwater lakes of East Antarctica. Polar Biology, 31, 199–208.CrossRefGoogle Scholar
  81. Tanabe, Y., Ohtani, S., Kasamatsu, N., Fukuchi, M., & Kudoh, S. (2010). Photophysiological responses of phytobenthic communities to the strong light and UV in Antarctic shallow lakes. Polar Biology, 33, 85–100.CrossRefGoogle Scholar
  82. Tanabe, Y., Yasui, S., Osono, T., Uchida, M., Kudoh, S., & Yamamuro, M. (2017). Abundant deposits of nutrients inside lakebeds of Antarctic oligotrophic lakes. Polar Biology, 40, 603–613.CrossRefGoogle Scholar
  83. Taton, A., Grubisic, S., Balthasart, P., Hodgson, D. A., Laybourn-Parry, J., & Wilmotte, A. (2006a). Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiology Ecology, 57, 272–289.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Taton, A., Grubisic, S., Ertz, D., Hodgson, D. A., Piccardi, R., Biondi, N., Tredici, M. R., Mainini, M., Losi, D., Marinelli, F., & Wilmotte, A. (2006b). Polyphasic study of Antarctic cyanobacterial strains. Journal of Phycology, 42, 1257–1270.CrossRefGoogle Scholar
  85. Tsujimoto, M., McInnes, S. J., Convey, P., & Imura, S. (2014). Preliminary description of tardigrade species diversity and distribution pattern around coastal Syowa Station and inland Sør Rondane Mountains, Dronning Maud Land, East Antarctica. Polar Biology, 37, 1361–1367.CrossRefGoogle Scholar
  86. van Berkum, P., & Keyser, H. H. (1985). Anaerobic growth and denitrification among different serogroups of soybean rhizobia. Applied and Environmental Microbiology, 49, 772–777.PubMedPubMedCentralGoogle Scholar
  87. Verleyen, E., Hodgson, D. A., Sabbe, K., Cremer, H., Emslie, S. D., Gibson, J., Hall, B., Imura, S., Kudoh, S., Marshall, G. J., McMinn, A., Melles, M., Newman, L., Roberts, D., Roberts, S. J., Singh, S. M., Sterken, M., Tavernier, I., Verkulich, S., de Vyver, E. V., Van Nieuwenhuyze, W., Wagner, B., & Vyverman, W. (2011). Post-glacial regional climate variability along the East Antarctic coastal margin—Evidence from shallow marine and coastal terrestrial records. Earth-Science Reviews, 104, 199–212.CrossRefGoogle Scholar
  88. Vincent, W. F., & Quesada, A. (2012). Cyanobacteria in high latitude lakes, rivers and seas. In B. A. Whitton (Ed.), Ecology of cyanobacteria II: Their diversity in space and time (pp. 371–385). Dordrecht: Springer.CrossRefGoogle Scholar
  89. Vincent, W. F., Castenholz, R. W., Downes, M. T., & Howard-Williams, C. (1993a). Antarctic cyanobacteria: Light, nutrients, and photosynthesis in the microbial mat environment. Journal of Phycology, 29, 745–755.CrossRefGoogle Scholar
  90. Vincent, W. F., Downes, M. T., Castenholz, R. W., & Howard-Williams, C. (1993b). Community structure and pigment organisation of cyanobacteria-dominated microbial mats in Antarctica. European Journal of Phycology, 28, 213–221.CrossRefGoogle Scholar
  91. Wharton, R. A., Parker, B. C., & Simmons, G. M. (1983). Distribution, species composition and morphology of algal mats in Antarctic dry valley lakes. Phycologia, 22, 355–365.CrossRefGoogle Scholar
  92. Wing, K. T., & Priscu, J. C. (1993). Microbial communities in the permanent ice cap of Lake Bonney, Antarctica: Relationships among chlorophyll-a, gravel and nutrients. Antarctic JUS Review, 28, 246–249.Google Scholar
  93. Wright, A., & Siegert, M. (2012). A fourth inventory of Antarctic subglacial lakes. Antarctic Science, 24, 659–664.CrossRefGoogle Scholar
  94. Wynn-Williams, D. D. (1990). Ecological aspects of Antarctic microbiology. In K. C. Marshall (Ed.), Advances in microbial ecology (pp. 71–146). Boston: Springer.CrossRefGoogle Scholar
  95. Yau, S., Lauro, F. M., Williams, T. J., Demaere, M. Z., Brown, M. V., Rich, J., Gibson, J. A. E., & Cavicchioli, R. (2013). Metagenomic insights into strategies of carbon conservation and unusual sulfur biogeochemistry in a hypersaline Antarctic lake. The ISME Journal, 7, 1944–1961.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Yokoyama, R., Salleh, B., & Honda, D. (2007). Taxonomic rearrangement of the genus Ulkenia sensu lato based on morphology, chemotaxonomical characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): Emendation for Ulkenia and erection of Botryochytrium, Parietichytrium, and Sicyoidochytrium gen. nov. Mycoscience, 48, 329–341.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ryosuke Nakai
    • 1
    Email author
  • Satoshi Imura
    • 2
    • 3
  • Takeshi Naganuma
    • 4
  1. 1.Applied Molecular Microbiology Research Group, Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)SapporoJapan
  2. 2.National Institute of Polar Research (NIPR)Tachikawa, TokyoJapan
  3. 3.Department of Polar ScienceSOKENDAI (The Graduate University for Advanced Studies)Tachikawa, TokyoJapan
  4. 4.Graduate School of Biosphere ScienceHiroshima UniversityHigashihiroshimaJapan

Personalised recommendations