The Hidden Life of Antarctic Rocks

  • Vanesa Amarelle
  • Valentina Carrasco
  • Elena FabianoEmail author
Part of the Springer Polar Sciences book series (SPPS)


Microbes are able to colonize almost every part on Earth where liquid water is available, and rocks are not an exception. Moreover, in extremely dry and harsh places, like some found in Antarctica, rocks may represent the main refuge for life. Despite its relevance, our understanding of lithobiontic communities is just at the beginnings. In this chapter we present a brief history of research on Antarctic lithobiontic communities and summarize recent advances in our understanding of this fascinating microbial world. We point up methodological approximations used for its characterization, microbial diversity of lithobionts, and the identification of functional traits that drive lithobiont survival and community assembly. These extreme environmental niches can be considered a barely explored source of microbial life whose function in global processes such as global climate changes remains unclear. Understanding the adaptations that allow lithobionts to successfully compete in their environment is a quest for understanding the fundamentals of life.


Lithobiontic communities Rock environment Carbon input Nitrogen input Adaptation 



Programa de Desarrollo de las Ciencias Básicas (PEDECIBA) and Agencia Nacional de Investigación e Innovación (POS_NAC_2016_1_ 129907).


  1. Albi, T., & Serrano, A. (2016). Inorganic polyphosphate in the microbial world. Emerging roles for a multifaceted biopolymer. World Journal of Microbiology and Biotechnology, 32(2), 27.CrossRefGoogle Scholar
  2. Ascaso, C., & Wierzchos, J. (2002). New approaches to the study of Antarctic lithobiontic microorganisms and their inorganic traces, and their application in the detection of life in Martian rocks. International Microbiology, 5(4), 215–222.CrossRefGoogle Scholar
  3. Ascaso, C., Sancho, L. G., & Rodríguez-Pascual, C. (1990). The weathering action of saxicolous lichens in maritime Antarctica. Polar Biology, 11, 33–39.CrossRefGoogle Scholar
  4. Broady, P. A. (1981a). The ecology of chasmolithic algae at coastal locations of Antarctica. Phycologia, 20(3), 259–272.CrossRefGoogle Scholar
  5. Broady, P. A. (1981b). Ecological and taxonomic observations on subaerial epilithic algae from Princess Elizabeth Land and Mac.Robertson Land, Antarctica. British Phycological Journal, 16(3), 257–266.CrossRefGoogle Scholar
  6. Cary, S. C., et al. (2010). On the rocks: The microbiology of Antarctic Dry Valley soils. Nature Reviews. Microbiology, 8(2), 129–138.CrossRefGoogle Scholar
  7. Chan, Y., et al. (2013). Functional ecology of an Antarctic Dry Valley. Proceedings of the National Academy of Sciences of the United States of America, 110(22), 8990–8995.CrossRefGoogle Scholar
  8. Cowan, D. A., & Tow, L. A. (2004). Endangered antarctic environments. Annual Review of Microbiology, 58, 649–690.CrossRefGoogle Scholar
  9. Cowan, D. A., et al. (2010). Diverse hypolithic refuge communities in the McMurdo Dry Valleys. Antarctic Science, 22(6), 714–720.CrossRefGoogle Scholar
  10. Cowan, D. A., et al. (2011). Hypolithic communities: Important nitrogen sources in Antarctic desert soils. Environmental Microbiology Reports, 3(5), 581–586.CrossRefGoogle Scholar
  11. Crits-Christoph, A., et al. (2016). Phylogenetic and functional substrate specificity for endolithic microbial communities in hyper-arid environments. Frontiers in Microbiology, 7, 301.CrossRefGoogle Scholar
  12. De Los Ríos, A., Wierzchos, J., & Ascaso, C. (2014). Synthesis. The lithic microbial ecosystems of Antarctica’s McMurdo Dry Valleys. Antarctic Science, 26(5), 459–477.CrossRefGoogle Scholar
  13. Deming, J. W., & Young, J. N. (2017). The role of exopolysaccharides in microbial adaptation to cold habitats. In R. Margesin (Ed.), Psychrophiles: From biodiversity to biotechnology (pp. 259–284). Cham: Springer International Publishing.CrossRefGoogle Scholar
  14. Diels, L. (1914). Die Algenvegetation der Südtiroler Dolomitriffe. Ein Beitrag zur Ökologie der Lithophyten. Berichte der Deutschen Botanischen Gesellschaft, 32, 502–526.Google Scholar
  15. Dieser, M., Greenwood, M., & Foreman, C. M. (2010). Carotenoid pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arctic, Antarctic, and Alpine Research, 42(4), 396–405.CrossRefGoogle Scholar
  16. Frederick, J. E., & Snell, H. E. (1988). Ultraviolet radiation levels during the antarctic spring. Science, 241(4864), 438–440.CrossRefGoogle Scholar
  17. Friedmann, E. I. (1982). Endolithic microorganisms in the antarctic cold desert. Science, 215(4536), 1045–1053.CrossRefGoogle Scholar
  18. Friedmann, E. I., & Kibler, A. P. (1980). Nitrogen economy of endolithic microbial communities in hot and cold deserts. Microbial Ecology, 6(2), 95–108.CrossRefGoogle Scholar
  19. Friedmann, E. I., & Ocampo, R. (1976). Endolithic blue-green algae in the dry valleys: Primary producers in the antarctic desert ecosystem. Science, 193(4259), 1247–1249.CrossRefGoogle Scholar
  20. Friedmann, E. I., et al. (1993). Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica. Microbial Ecology, 25(1), 51–69.CrossRefGoogle Scholar
  21. Friedmann, E. I., Druk, A. Y., & McKay, C. P. (1994). Limits of life and microbial extinction in the antarctic desert. Antarctic Journal of the United States, 29(5), 176–179.Google Scholar
  22. Goordial, J., et al. (2016). Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica. The ISME Journal, 10(7), 1613–1624.CrossRefGoogle Scholar
  23. Goordial, J., et al. (2017). Comparative activity and functional ecology of permafrost soils and lithic niches in a hyper-arid polar desert. Environmental Microbiology, 19(2), 443–458.CrossRefGoogle Scholar
  24. Guillitte, O. (1995). Bioreceptivity: A new concept for building ecology studies. Science of the Total Environment, 167(1), 215–220.CrossRefGoogle Scholar
  25. Horowitz, N. H., Cameron, R. E., & Hubbard, J. S. (1972). Microbiology of the dry valleys of Antarctica. Science, 176(4032), 242–245.CrossRefGoogle Scholar
  26. Hughes, K. A., & Lawley, B. (2003). A novel Antarctic microbial endolithic community within gypsum crusts. Environmental Microbiology, 5(7), 555–565.CrossRefGoogle Scholar
  27. de la Torre, J. R., et al. (2003). Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology, 69(7), 3858–3867.CrossRefGoogle Scholar
  28. Le, P. T., et al. (2016). Comparative metagenomic analysis reveals mechanisms for stress response in hypoliths from extreme hyperarid deserts. Genome Biology and Evolution, 8(9), 2737–2747.CrossRefGoogle Scholar
  29. Lee, C. K., et al. (2012). The inter-valley soil comparative survey: The ecology of Dry Valley edaphic microbial communities. The ISME Journal, 6(5), 1046–1057.CrossRefGoogle Scholar
  30. de los Ríos, A., Cary, C., & Cowan, D. (2014). The spatial structures of hypolithic communities in the Dry Valleys of East Antarctica. Polar Biology, 37(12), 1823–1833.CrossRefGoogle Scholar
  31. Makhalanyane, T. P., et al. (2013). Evidence for successional development in Antarctic hypolithic bacterial communities. The ISME Journal, 7(11), 2080–2090.CrossRefGoogle Scholar
  32. Makhalanyane, T. P., Pointing, S. B., & Cowan, D. A. (2014). Lithobionts: Cryptic and refuge niches. In D. A. Cowan (Ed.), Antarctic terrestrial microbiology: Physical and biological properties of Antarctic soils (pp. 163–179). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  33. Marlow, J., Peckmann, J., & Orphan, V. (2015). Autoendoliths: A distinct type of rock-hosted microbial life. Geobiology, 13(4), 303–307.CrossRefGoogle Scholar
  34. McKay, C. P., & Friedmann, E. I. (1985). The cryptoendolithic microbial environment in the Antarctic cold desert: Temperature variations in nature. Polar Biology, 4, 19–25.CrossRefGoogle Scholar
  35. Moorhead, D. L., et al. (1999). Ecological legacies: Impacts on ecosystems of the McMurdo Dry Valleys. Bioscience, 49(12), 1009–1019.CrossRefGoogle Scholar
  36. Nienow, J. A., McKay, C. P., & Friedmann, E. I. (1988). The cryptoendolithic microbial environment in the Ross Desert of Antarctica: Light in the photosynthetically active region. Microbial Ecology, 16(3), 271–289.CrossRefGoogle Scholar
  37. Obbels, D., et al. (2016). Bacterial and eukaryotic biodiversity patterns in terrestrial and aquatic habitats in the Sor Rondane Mountains, Dronning Maud Land, East Antarctica. FEMS Microbiology Ecology, 92(6), fiw041.CrossRefGoogle Scholar
  38. Omelon, C. R. (2016). Endolithic microorganisms and their habitats. In H. C (Ed.), Their world: A diversity of microbial environments. Advances in environmental microbiology. Cham: Springer.Google Scholar
  39. Órdenes-Aenishanslins, N., et al. (2016). Pigments from UV-resistant Antarctic bacteria as photosensitizers in dye sensitized solar cells. Journal of Photochemistry and Photobiology B: Biology, 162, 707–714.CrossRefGoogle Scholar
  40. Pointing, S. B., & Belnap, J. (2012). Microbial colonization and controls in dryland systems. Nature Reviews Microbiology, 10(8), 551–562.CrossRefGoogle Scholar
  41. Pointing, S. B., et al. (2009). Highly specialized microbial diversity in hyper-arid polar desert. Proceedings of the National Academy of Sciences of the United States of America, 106(47), 19964–19969.CrossRefGoogle Scholar
  42. Rogers, A. D. (2007). Evolution and biodiversity of Antarctic organisms: A molecular perspective. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1488), 2191–2214.CrossRefGoogle Scholar
  43. Siebert, J., & Hirsch, P. (1988). Characterization of 15 selected coccal bacteria isolated from Antarctic rock and soil samples from the McMurdo-Dry Valleys (South-Victoria Land). Polar Biology, 9, 37–44.CrossRefGoogle Scholar
  44. Smith, M. C., et al. (2000). Sublithic bacteria associated with Antarctic quartz stones. Antarctic Science, 12(2), 177–184.CrossRefGoogle Scholar
  45. Van Goethem, M. W., et al. (2016). Characterization of bacterial communities in lithobionts and soil niches from Victoria Valley, Antarctica. FEMS Microbiology Ecology, 92(4), fiw051.CrossRefGoogle Scholar
  46. Villar, S. E., Edwards, H. G., & Seaward, M. R. (2005). Raman spectroscopy of hot desert, high altitude epilithic lichens. Analyst, 130(5), 730–737.CrossRefGoogle Scholar
  47. Vishniac, W. V., & Mainzer, S. E. (1973). Antarctica as a Martian model. Life Sciences in Space Research, 11, 25–31.Google Scholar
  48. Warscheid, T., & Braams, J. (2000). Biodeterioration of stone: A review. International Biodeterioration & Biodegradation, 46(4), 343–368.CrossRefGoogle Scholar
  49. Wei, S. T., et al. (2016). Taxonomic and functional diversity of soil and hypolithic microbial communities in Miers Valley, McMurdo Dry Valleys, Antarctica. Frontiers in Microbiology, 7, 1642.PubMedPubMedCentralGoogle Scholar
  50. Wierzchos, J., de los Rios, A., & Ascaso, C. (2012). Microorganisms in desert rocks: The edge of life on earth. International Microbiology, 15(4), 173–183.Google Scholar
  51. Wierzchos, J., et al. (2018). Endolithic microbial habitats as refuges for life in polyextreme environment of the Atacama Desert. Current Opinion in Microbiology, 43, 124–131.CrossRefGoogle Scholar
  52. Zucconi, L., et al. (2014). Mapping the lithic colonization at the boundaries of life in Northern Victoria Land, Antarctica. Polar Biology, 39, 91–102.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vanesa Amarelle
    • 1
  • Valentina Carrasco
    • 1
  • Elena Fabiano
    • 1
    Email author
  1. 1.Department of Microbial Biochemistry and GenomicsBiological Research Institute Clemente EstableMontevideoUruguay

Personalised recommendations