Targeting KRAS Mutant CMS3 Subtype by Metabolic Inhibitors

  • Oscar AguileraEmail author
  • Roberto Serna-Blasco
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1110)


Cancer cells rewire their metabolism in order to boost growth, survival, proliferation, and chemoresistance. The common event of this aberrant metabolism is the increased glucose uptake and fermentation of glucose to lactate. This phenomenon is observed even in the presence of O2 and completely functioning mitochondria. This is known as the “Warburg Effect” and it is a hallmark in cancer. Up to 40% of all CRC’s are known to have a mutated (abnormal) KRAS gene, found at differing frequencies in all consensus molecular subtypes (CMS). CMS3 colon cancer molecular subtype contains the so-called ‘metabolic tumours’ which represents 13% of total CR cases. These tumours display remarkable metabolic deregulation, often showing KRAS mutations (68%). Unfortunately, patients harbouring mutated KRAS are unlikely to benefit from anti-EGFR therapies. Moreover, it remains unclear that patients with KRAS wild-type CRC will definitely respond to such therapies. Although some clinically designed-strategies to modulate KRAS aberrant activation have been designed, all attempts to target KRAS have failed in the clinical assays and KRAS has been assumed to be invulnerable to chemotherapeutic attack. Quest for metabolic inhibitors with anti-tumour activity may constitute a novel and hopeful approach in order to handle KRAS dependent chemoresistance in colon cancer.


KRAS Cancer Chemoresistance Metabolism CMS3 


  1. Aguilera O, Fraga MF, Ballestar E, Paz MF, Herranz M, Espada J, García JM, Muñoz A, Esteller M, González-Sancho JM (2006) Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer. Oncogene 25:4116–4121. CrossRefPubMedGoogle Scholar
  2. Aguilera O, Muñoz-Sagastibelza M, Torrejón B, Borrero-Palacios A, Del Puerto-Nevado L, Martínez-Useros J, Rodriguez-Remirez M, Zazo S, García E, Fraga M, Rojo F, García-Foncillas J (2016) Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer. Oncotarget 7:47954–47965. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Akkiprik M, Celikel CA, Düşünceli F, Sönmez O, Güllüoğlu BM, Sav A, Ozer A (2008) Relationship between overexpression of ras p21 oncoprotein and K-ras codon 12 and 13 mutations in Turkish colorectal cancer patients. Turk J Gastroenterol 19:22–27PubMedGoogle Scholar
  4. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51. CrossRefPubMedGoogle Scholar
  5. Bray F, Møller B (2006) Predicting the future burden of cancer. Nat Rev Cancer 6:63–74. CrossRefPubMedGoogle Scholar
  6. Cameron E, Pauling L (1976) Supplemental ascorbate in the supportive treatment of cancer: prolongation of survival times in terminal human cancer. Proc Natl Acad Sci U S A 73:3685–3689CrossRefGoogle Scholar
  7. Carr RM, Qiao G, Qin J, Jayaraman S, Prabhakar BS, Maker AV (2016) Targeting the metabolic pathway of human colon cancer overcomes resistance to TRAIL-induced apoptosis. Cell Death Discov 12:16067. CrossRefGoogle Scholar
  8. Cejas P, López-Gómez M, Aguayo C, Madero R, de Castro Carpeño J, Belda-Iniesta C, Barriuso J, Moreno García V, Larrauri J, López R, Casado E, Gonzalez-Barón M, Feliu J (2009) KRAS mutations in primary colorectal cancer tumors and related metastases: a potential role in prediction of lung metastasis. PLoS One 4:e8199. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen Q, Espey MG, Sun AY, Pooput C, Kirk KL, Krishna MC, Khosh DB, Drisko J, Levine M (2008) Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci U S A 105:11105–11109. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Conlin A, Smith G, Carey FA, Wolf CR, Steele RJ (2005) The prognostic significance of K-ras, p53, and APC mutations in colorectal carcinoma. Gut 54:1283–1286. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ (2014) Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov 13:828–851. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dang CV (2012) Links between metabolism and cancer. Genes Dev 26:877–890. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dang CV, Kim JW, Gao P, Yustein J (2008) The interplay between MYC and HIF in cancer. Nat Rev Cancer 8:51–56. CrossRefPubMedGoogle Scholar
  14. Dayton TL, Jacks T, Vander Heiden MG (2016) PKM2, cancer metabolism, and the road ahead. EMBO Rep 17:1721–1730. CrossRefPubMedPubMedCentralGoogle Scholar
  15. De Berardinis RJ, Cheng T (2010) Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29:313–324. CrossRefGoogle Scholar
  16. Ferlay J, Soerjomataram I, Dikshit R, Eser S Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 5:359–386. CrossRefGoogle Scholar
  17. Flight MH (2011) A sweet blow for cancer cells. Nat Rev Drug Discov 10:734. CrossRefPubMedGoogle Scholar
  18. Granchi C, Fortunato S, Minutolo F (2016) Anticancer agents interacting with membrane glucose transporters. Med Chem Comm 7:1716–1729. CrossRefGoogle Scholar
  19. Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P, Bot BM, Morris JS, Simon IM, Gerster S, Fessler E, De Sousa E, Melo F, Missiaglia E, Ramay H, Barras D, Homicsko K, Maru D, Manyam GC, Broom B, Boige V, Perez-Villamil B, Laderas T, Salazar R, Gray JW, Hanahan D, Tabernero J, Bernards R, Friend SH, Laurent-Puig P, Medema JP, Sadanandam A, Wessels L, Delorenzi M, Kopetz S, Vermeulen L, Tejpar S (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 11:1350–1356. CrossRefGoogle Scholar
  20. Guppy M, Leedman P, Zu X, Russell V (2002) Contribution by different fuels and metabolic pathways to the total ATP turnover of proliferating MCF-7 breast cancer cells. Biochem J 364:309–315. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hassanein M, Qian J, Hoeksema MD, Wang J, Jacobovitz M, Ji X, Harris FT, Harris BK, Boyd KL, Chen H, Eisenberg R, Massion PP (2015) Targeting SLC1a5-mediated glutamine dependence in non-small cell lung cancer. Int J Cancer 137:158715–158797. CrossRefGoogle Scholar
  22. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342. CrossRefPubMedGoogle Scholar
  23. Irahara N, Baba Y, Nosho K, Shima K, Yan L, Dias-Santagata D, Iafrate AJ, Fuchs CS, Haigis KM, Ogino S (2010) NRAS mutations are rare in colorectal cancer. Diagn Mol Pathol 19:157–163. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Iwamoto M, Kawada K, Nakamoto Y, Itatani Y, Inamoto S, Toda K, Kimura H, Sasazuki T, Shirasawa S, Okuyama H, Inoue M, Hasegawa S, Togashi K, Sakai Y (2014) Regulation of 18F-FDG accumulation in colorectal cancer cells with mutated KRAS. J Nucl Med 55:2038–2044. CrossRefPubMedGoogle Scholar
  25. Jia Y, Ma Z, Liu X, Zhou W, He S, Xu X, Ren G, Xu G, Tian K (2015) Metformin prevents DMH-induced colorectal cancer in diabetic rats by reversing the Warburg effect. Cancer Med 4:1730–1741. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jonker DJ, O’Callaghan CJ, Karapetis CS, Zalcberg JR, Tu D, Au HJ, Berry SR, Krahn M, Price T, Simes RJ, Tebbutt NC, van Hazel G, Wierzbicki R, Langer C, Moore MJ (2007) Cetuximab for the treatment of colorectal cancer. N Engl J Med 357:2040–2048. CrossRefPubMedGoogle Scholar
  27. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC, Simes RJ, Chalchal H, Shapiro JD, Robitaille S, Price TJ, Shepherd L, Au HJ, Langer C, Moore MJ, Zalcberg JR (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359:1757–1765. CrossRefPubMedGoogle Scholar
  28. Kawada K, Nakamoto Y, Kawada M, Hida K, Matsumoto T, Murakami T, Hasegawa S, Togashi K, Sakai Y (2012) Relationship between 18F-fluorodeoxyglucose accumulation and KRAS/BRAF mutations in colorectal cancer. Clin Cancer Res 18:1696–1703. CrossRefPubMedGoogle Scholar
  29. Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, Sotgia F, Lisanti LMP (2017) Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol 14:11–31. CrossRefPubMedGoogle Scholar
  30. Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E, Maguire C, Gammer TL, Mackey JR, Fulton D, Abdulkarim B, McMurtry MS, Petruk KC (2010) Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2:m31ra34. CrossRefGoogle Scholar
  31. Morani F, Phadngam S, Follo C, Titone R, Aimaretti G, Galetto A, Alabiso O, Isidoro C (2014) PTEN regulates plasma membrane expression of glucose transporter 1 and glucose uptake in thyroid cancer cells. J Mol Endocrinol 53:247–258. CrossRefPubMedGoogle Scholar
  32. Nash GM, Gimbel M, Cohen AM, Zeng ZS, Ndubuisi MI, Nathanson DR, Ott J, Barany F, Paty PB (2010) KRAS mutation and microsatellite instability: two genetic markers of early tumor development that influence the prognosis of colorectal cancer. Ann Surg Oncol 17:416–424. CrossRefPubMedGoogle Scholar
  33. Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in cancer. Cancer Res 72:2457–2467. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Rastogi S, Banerjee S, Chellappan S, Simon GR (2007) Glut-1 antibodies induce growth arrest and apoptosis in human cancer cell lines. Cancer Lett 257:244–251. CrossRefPubMedGoogle Scholar
  35. Shibuya K, Okada M, Suzuki S, Seino M, Seino S, Takeda H, Kitanaka C (2015) Targeting the facilitative glucose transporter GLUT1 inhibits the self-renewal and tumor-initiating capacity of cancer stem cells. Oncotarget 6:651–661. CrossRefPubMedGoogle Scholar
  36. Shimizu N, Ohtsubo M, Minoshima S (2007) Mutation view/KM cancer DB: a database for cancer gene mutation. Cancer Sci 98:259–267. CrossRefPubMedGoogle Scholar
  37. Silvestri A, Palumbo F, Rasi I, Posca D, Pavlidou T, Paoluzi S, Castagnoli L, Cesareni G (2015) Metformin induces apoptosis and downregulates pyruvate kinase M2 in breast cancer cells only when grown in nutrient-poor conditions. PLoS One 10(8):e0136250. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Tegnebratt T, Lu L, Lee L, Meresse V, Tessier J, Ishii N, Harada N, Pisa P, Stone-Elander S (2013) [18 F]FDG-PET imaging is an early non-invasive pharmacodynamic biomarker for a first-in-class dual MEK/Raf inhibitor, RO5126766 (CH5126766), in preclinical xenograft models. EJNMMI Res 3(1):67. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Tian W, Wang Y, Xu Y, Guo X, Wang B, Sun L, Liu L, Cui F, Zhuang Q, Bao X, Schley G, Chung TL, Laslett AL, Willam C, Qin B, Maxwell PH, Esteban MA (2014) The hypoxia-inducible factor renders cancer cells more sensitive to vitamin C-induced toxicity. J Biol Chem 289:3339–3351. CrossRefPubMedGoogle Scholar
  40. Van Cutsem E, Köhne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, D’Haens G, Pintér T, Lim R, Bodoky G, Roh JK, Folprecht G, Ruff P, Stroh C, Tejpar S, Schlichting M, Nippgen J, Rougier P (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360:1408–1417. CrossRefPubMedGoogle Scholar
  41. Vaughn CP, Zobell SD, Furtado LV, Baker CL, Samowitz WS (2011) Frequency of KRAS, BRAF, and NRAS mutations in colorectal cancer. Genes Chromosomes Cancer 50:307–312. CrossRefPubMedGoogle Scholar
  42. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532. CrossRefPubMedGoogle Scholar
  43. Wang L, Xiong H, Wu F, Zhang Y, Wang J, Zhao L, Guo X, Chang LJ, Zhang Y, You MJ, Koochekpour S, Saleem M, Huang H, Lu J, Deng Y (2014) Hexokinase 2-mediated Warburg effect is required for PTEN- and p53-deficiency-driven prostate cancer growth. Cell Rep 8:1461–1474. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Warburg O (1956) On the origin of cancer cells. Science 123:309–314CrossRefGoogle Scholar
  45. Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21:297–308. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35:427–433. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wood TE, Dalili S, Simpson CD, Hurren R, Mao X, Saiz FS, Gronda M, Eberhard Y, Minden MD, Bilan PJ, Klip A, Batey RA, Schimmer AD (2008) A novel inhibitor of glucose uptake sensitizes cells to FAS-induced cell death. Mol Cancer Ther 7:3546–3555. CrossRefPubMedGoogle Scholar
  48. Xiang Y, Stine ZE, Xia J, Lu Y, O’Connor RS, Altman BJ, Hsieh AL, Gouw AM, Thomas AG, Gao P, Sun L, Song L, Yan B, Slusher BS, Zhuo J, Ooi LL, Lee CG, Mancuso A, McCallion AS, Le A, Milone MC, Rayport S, Felsher DW, Dang CV (2015) Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J Clin Invest 125:2293–2306. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Yamaguchi R, Perkins G (2012) Finding a panacea among combination cancer therapies. Cancer Res 72:18–23. CrossRefPubMedGoogle Scholar
  50. Ye LC, Liu TS, Ren L, Wei Y, Zhu DX, Zai SY, Ye QH, Yu Y, Xu B, Qin XY, Xu J (2013) Randomized controlled trial of cetuximab plus chemotherapy for patients with KRAS wild-type unresectable colorectal liver-limited metastases. J Clin Oncol 31:1931–1938. CrossRefPubMedGoogle Scholar
  51. Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL, Yan H, Wang W, Chen S, Viale A, Zheng H, Paik JH, Lim C, Guimaraes AR, Martin ES, Chang J, Hezel AF, Perry SR, Hu J, Gan B, Xiao Y, Asara JM, Weissleder R, Wang YA, Chin L, Cantley LC, DePinho RA (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149:656–670. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Yuen ST, Davies H, Chan TL, Ho JW, Bignell GR, Cox C, Stephens P, Edkins S, Tsui WW, Chan AS, Futreal PA, Stratton MR, Wooster R, Leung SY (2002) Similarity of the phenotypic patterns associated with BRAF and KRAS mutations in colorectal neoplasia. Cancer Res 62:6451–6455PubMedGoogle Scholar
  53. Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagolapan H, Schmidt K, Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H, Schmidt K, Willson JK, Markowitz S, Zhou S, Diaz LA Jr, Velculescu VE, Lengauer C, Kinzler KW, Vogelstein B, Papadopoulos N (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325(5947):1555–1559. CrossRefGoogle Scholar
  54. Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H, Schmidt K, Willson JK, Markowitz S, Zhou S, Diaz LA Jr, Velculescu VE, Lengauer C, Kinzler KW, Vogelstein B, Papadopoulos N (2015) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325:1555–1559. CrossRefGoogle Scholar
  55. Zavodna K, Konecny M, Krivulcik T, Spanik S, Behulova R, Vizvaryova M, Weismanova E, Galbavy S, Kausitz J (2009) Genetic analysis of KRAS mutation status in metastatic colorectal cancer patients. Neoplasma 56(3):275–278. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Translational Oncology Division, Oncohealth InstituteFundacion Jimenez Diaz University HospitalMadridSpain

Personalised recommendations