Advertisement

Performance Analysis of Searchable Symmetric Encryption Schemes on Mobile Devices

  • Dennis Y. W. LiuEmail author
  • Chi Tsiu Tong
  • Winnie W. M. Lam
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11058)

Abstract

In the age of cloud computing, it is common for individuals to store their digital documents to the cloud so that they can access them anytime and anywhere. While the demand of cloud storage continues to grow, the associated security threat has caught attention of the public. Searchable encryption (SE) attempts to ensure confidentiality of data in public storage while offering searching capability to the end users. Previous studies on SE focused on the security and performance on desktop applications and there were no discussions of those on mobile devices, where their memory, computational and network capabilities are limited. In this paper, we implemented three recent SE schemes and evaluated their performance in Android mobile devices in terms of indexing time and searching time, under (1) exact-match, (2) partial search, and (3) multi-keyword queries. We realize that each of the schemes has its performance advantages and disadvantages. Since user experience is one of the major concerns in mobile App, our findings would help App developers to choose the appropriate SE schemes in their applications.

Keywords

Searchable encryption schemes Android devices Encryption scheme performance 

References

  1. 1.
    Android. Android monitor basics (2018). https://developer.android.com/studio/profile/am-basics. Accessed 4 May 2018
  2. 2.
    Arora, V., Tyagi, S.: An efficient multi-keyword symmetric searchable encryption scheme for secure data outsourcing. Int. J. Comput. Netw. Inf. Secur. 8(11), 65–71 (2016)Google Scholar
  3. 3.
    Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74143-5_30CrossRefGoogle Scholar
  4. 4.
    Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01001-9_13CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_16CrossRefGoogle Scholar
  6. 6.
    Eclipse Foundation. The aspectj project (2018). http://www.eclipse.org/aspectj/. Accessed 4 May 2018
  7. 7.
    Goh, E.: Secure indexes. IACR Cryptology ePrint Archive 2003, 216 (2003)Google Scholar
  8. 8.
    Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams. J. ACM 43(3), 431–473 (1996)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Google: google/guava (2018). https://github.com/google/guava. Accessed 4 May 2018
  10. 10.
    Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ, USA, 3–7 November 2014, pp. 310–320 (2014)Google Scholar
  11. 11.
    Hc.apache.org. Apache httpcomponents (2018). https://hc.apache.org/. Accessed 4 May 2018
  12. 12.
    Hu, C., Han, L.: Efficient wildcard search over encrypted data. Int. J. Inf. Sec. 15(5), 539–547 (2015)CrossRefGoogle Scholar
  13. 13.
    Junit.org: Junit - about (2018). https://junit.org/junit4/. Accessed 4 May 2018
  14. 14.
    Skjegstad, M.: Magnuss/java-bloomfilter (2018). https://github.com/magnuss/java-bloomfilter. Accessed 4 May 2018
  15. 15.
    Song, D.X., Wagner, D.A., Perrig, A.: Practical techniques for searches on encrypted data. In: 2000 IEEE Symposium on Security and Privacy, Berkeley, California, USA, vol. 14–17, pp. 44–55, May 2000Google Scholar
  16. 16.
    Tada.github.io: Postgresql pl/java pl/java: stored procedures, triggers, and functions for postgresql (2018). https://tada.github.io/pljava/. Accessed 4 May 2018
  17. 17.
    Wharton, J.: Hugo (2018). https://github.com/jakeWharton/hugo. Accessed 4 May 2018

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Dennis Y. W. Liu
    • 1
    Email author
  • Chi Tsiu Tong
    • 1
  • Winnie W. M. Lam
    • 2
  1. 1.Department of ComputingThe Hong Kong Polytechnic UniversityKowloonHong Kong
  2. 2.Department of Mathematics and Information TechnologyThe Education University of Hong KongTai PoHong Kong

Personalised recommendations