LA\(^3\): A Lightweight Accountable and Anonymous Authentication Scheme for Resource-Constrained Devices

  • Wensheng ZhangEmail author
  • Chuang Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11058)


In order to provide a lightweight accountable and anonymous authentication solution for resource-constrained devices, we propose LA\(^3\), a variant of group signature scheme. The design is based on the assumptions of the DDH, q-SDH, q-DDHI and LRSW problems, as well as the knowledge of exponent assumption. A security model has been formally defined, and proofs have been provided to show that, LA\(^3\) achieves the security properties of non-frameability, traceability and selfless anonymity in the random oracle model. LA\(^3\) has also been implemented and compared to a few classic group signature schemes. The results show that LA\(^3\) achieves much higher computational efficiency.


  1. 1.
  2. 2.
    Ateniese, G., Song, D., Tsudik, G.: Quasi-efficient revocation of group signatures. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 183–197. Springer, Heidelberg (2003). Scholar
  3. 3.
    Bansarkhani, R., Misoczki, R.: G-merkle: a hash-based group signature scheme from standard assumptions. IACR Cryptology ePrint Archive (2018)Google Scholar
  4. 4.
    Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004). Scholar
  5. 5.
    Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998). Scholar
  6. 6.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). Scholar
  7. 7.
    Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: CCS, pp. 168–177 (2004)Google Scholar
  8. 8.
    Boneh, D., Eskandarian, S., Fisch, B.: Post-quantum EPID group signatures from symmetric primitives. IACR Cryptology ePrint Archive (2018)Google Scholar
  9. 9.
    Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002). Scholar
  10. 10.
    Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004). Scholar
  11. 11.
    Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-key primitives. In: ACM CCS, pp. 1825–1842 (2017)Google Scholar
  12. 12.
    Cheng, Z.: Implementing pairing-based cryptosystems in USB tokens. IACR Cryptology ePrint Archive (2014)Google Scholar
  13. 13.
    Gouvêa, C.P.L., López, J.: Software implementation of pairing-based cryptography on sensor networks using the MSP430 microcontroller. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 248–262. Springer, Heidelberg (2009). Scholar
  14. 14.
  15. 15.
    Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: achieving full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham (2017). Scholar
  16. 16.
    Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys, H., Adams, C. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg (2000). Scholar
  17. 17.
    Nakanishi, T., Funabiki, N.: Verifier-local revocation group signature schemes with backward unlinkability from bilinear maps. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 533–548. Springer, Heidelberg (2005). Scholar
  18. 18.
    Nakanishi, T., Funabiki, N.: A short verifier-local revocation group signature scheme with backward unlinkability. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 17–32. Springer, Heidelberg (2006). Scholar
  19. 19.
    Nakanishi, T., Funabiki, N.: A short anonymously revocable group signature scheme from decision linear assumption. In: ASIACCS, pp. 337–340 (2008)Google Scholar
  20. 20.
    Research, C.: Sec 2: recommended elliptic curve domain parameters. In: Standards for Efficient Cryptography (2000).
  21. 21.
    Unterluggauer, T., Wenger, E.: Efficient pairings and ECC for embedded systems. IACR Cryptology ePrint Archive (2014)Google Scholar
  22. 22.
    Vercautern, F.: Main computational assumptions in cryptography (2010).
  23. 23.
    Xiong, X., Wong, D., Deng, X.: TinyPairing: a fast and lightweight pairing-based cryptographic library for wireless sensor networks. In: IEEE Wireless Communication and Networking Conference (2010)Google Scholar
  24. 24.
    Zhang, W., Wang, C.: La\(^3\): a lightweight accountable and anonymous authentication scheme for resource-constrained devices (full version). Technical report in Computer Science Department at ISU (2018).
  25. 25.
    Zhu, Y., Ma, D., Wang, S., Feng, R.: Efficient identity-based encryption without pairings and key escrow for mobile devices. In: Ren, K., Liu, X., Liang, W., Xu, M., Jia, X., Xing, K. (eds.) WASA 2013. LNCS, vol. 7992, pp. 42–53. Springer, Heidelberg (2013). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Iowa State UniversityAmesUSA
  2. 2.Microsoft Inc.SeattleUSA

Personalised recommendations