Advertisement

EMA-LAB: Efficient Multi Authorisation Level Attribute Based Access Control

  • Nesrine Kaaniche
  • Sana Belguith
  • Giovanni Russello
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11058)

Abstract

Recent years have witnessed the trend of increasingly relying on remote and distributed infrastructures. This increases the complexity of access control to data, where access control policies should be flexible and distinguishable among users with different privileges. In this paper, we present \(\mathsf {EMA}\)-\(\mathsf {LAB}\), a novel Multi Authorisation Level Attribute Based Access Control with short ciphertexts size. It relies on the usage of a constant-size threshold attribute based encryption scheme. The \(\mathsf {EMA}\)-\(\mathsf {LAB}\) scheme is multifold. First, it ensures a selective access to encrypted data with respect to different security levels. Second, the proposed construction protects the secrecy of enciphered contents against malicious adversaries, even in case of colluding users. Third, \(\mathsf {EMA}\)-\(\mathsf {LAB}\) relies on low computation and communication processes, mainly for resource-constrained devices, compared to most closely related schemes.

Keywords

Multi-level threshold scheme Attribute based encryption with short ciphertext Access control 

References

  1. 1.
    Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005).  https://doi.org/10.1007/11555827_10CrossRefGoogle Scholar
  2. 2.
    Attrapadung, N., Herranz, J., Laguillaumie, F., Libert, B., De Panafieu, E., Ràfols, C.: Attribute-based encryption schemes with constant-size ciphertexts. Theor. Comput. Sci. 422, 15–38 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Belguith, S., Kaaniche, N., Jemai, A., Laurent, M., Attia, R.: PAbAC: a privacy preserving attribute based framework for fine grained access control in clouds. In: 13th IEEE International Conference on Security and Cryptography (Secrypt), pp. 133–146 (2016)Google Scholar
  4. 4.
    Belguith, S., Kaaniche, N., Laurent, M., Jemai, A., Attia, R.: Constant-size threshold attribute based signcryption for cloud applications. In: SECRYPT 2017: 14th International Conference on Security and Cryptography, vol. 6, pp. 212–225 (2017)Google Scholar
  5. 5.
    Belguith, S., Kaaniche, N., Laurent, M., Jemai, A., Attia, R.: PHOABE: securely outsourcing multi-authority attribute based encryption with policy hidden for cloud assisted IoT. Comput. Netw. 133, 141–156 (2018)CrossRefGoogle Scholar
  6. 6.
    Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE Symposium on Security and Privacy (2007)Google Scholar
  7. 7.
    Ge, A., Zhang, R., Chen, C., Ma, C., Zhang, Z.: Threshold ciphertext policy attribute-based encryption with constant size ciphertexts. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 336–349. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31448-3_25CrossRefGoogle Scholar
  8. 8.
    Guo, L., Zhang, C., Yue, H., Fang, Y.: PSaD: a privacy-preserving social-assisted content dissemination scheme in DTNs. IEEE Trans. Mobile Comput. 13(12), 2903–2918 (2014)CrossRefGoogle Scholar
  9. 9.
    Herranz, J., Laguillaumie, F., Ráfols, C.: Constant size ciphertexts in threshold attribute-based encryption. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 19–34. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13013-7_2CrossRefGoogle Scholar
  10. 10.
    Horváth, M.: Attribute-based encryption optimized for cloud computing. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 566–577. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46078-8_47CrossRefGoogle Scholar
  11. 11.
    Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45760-7_17CrossRefGoogle Scholar
  12. 12.
    Kaaniche, N., Laurent, M.: Attribute based encryption for multi-level access control policies. In: SECRYPT 2017: 14th International Conference on Security and Cryptography, vol. 6, pp. 67–78. Scitepress (2017)Google Scholar
  13. 13.
    Li, L., Chen, X., Jiang, H., Li, Z., Li, K.C.: P-CP-ABE: parallelizing ciphertext-policy attribute-based encryption for clouds. In: 2016 17th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), pp. 575–580. IEEE (2016)Google Scholar
  14. 14.
    Onica, E., Felber, P., Mercier, H., Rivière, E.: Confidentiality-preserving publish/subscribe: a survey. ACM Comput. Surv. (CSUR) 49(2), 27 (2016)CrossRefGoogle Scholar
  15. 15.
    Wang, S., Zhou, J., Liu, J.K., Yu, J., Chen, J., Xie, W.: An efficient file hierarchy attribute-based encryption scheme in cloud computing. IEEE Trans. Inf. Forensics Secur. 11(6), 1265–1277 (2016)CrossRefGoogle Scholar
  16. 16.
    Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19379-8_4CrossRefGoogle Scholar
  17. 17.
    Zhang, Y., Zheng, D., Chen, X., Li, J., Li, H.: Efficient attribute-based data sharing in mobile clouds. Pervasive Mob. Comput. 28, 135–149 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Nesrine Kaaniche
    • 1
  • Sana Belguith
    • 2
  • Giovanni Russello
    • 2
  1. 1.SAMOVAR, Telecom SudParis, University Paris-SaclayParisFrance
  2. 2.The Cyber Security FoundryThe University of AucklandAucklandNew Zealand

Personalised recommendations