Fast QuadTree-Based Pose Estimation for Security Applications Using Face Biometrics

  • Paola Barra
  • Carmen Bisogni
  • Michele Nappi
  • Stefano RicciardiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11058)


Face represents a convenient contactless biometric descriptor, currently exploited in a wide range of security applications, though its performance may be considerably affected by subject’s pose variations with respect to enrolment pose. This issue is particularly challenging whether the face image is acquired in uncontrolled conditions, or it is extracted from video sequence, the latter representing a more and more frequent case given the huge diffusion of audiovisual content on the internet. To this regard, in this paper, a pose estimation method aimed at rapidly evaluating face rotations is presented. The proposed approach exploits a novel adaptation of quad-tree data structure to achieve an approximate estimate of face’s yaw/pitch angles, enabling to select the face image most compliant to the stored template. Preliminary results confirm the efficiency of the proposed method, that provides a more than halved computing time with respect to the state of the art with further improvement margins.


  1. 1.
    Murphy-Chutorian, E., Trivedi, M.M.: Head pose estimation in computer vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 607–626 (2009)CrossRefGoogle Scholar
  2. 2.
    Ding, C., Tao, D.: Pose-invariant face recognition with homography-based normalization. Pattern Recogn. 66, 144–152 (2017)CrossRefGoogle Scholar
  3. 3.
    Çelık, A., Arica, N.: Occlusion analysis for face frontalization. In: 2016 4th International Symposium on Digital Forensic and Security (ISDFS)Google Scholar
  4. 4.
    Kavitha, J., Mirnalinee, T.T.: Automatic frontal face reconstruction approach for pose invariant face recognition. Procedia Comput. Sci. 87, 300–305 (2016)CrossRefGoogle Scholar
  5. 5.
    Breitenstein, M.D., Kuettel, D., Weise, T., Van Gool, L., Pfister, H.: Real-time face pose estimation from single range images. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE, June 2008Google Scholar
  6. 6.
    Fanelli, G., Gall, J., Van Gool, L.:. Real time head pose estimation with random regression forests. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 617–624. IEEE, June 2011Google Scholar
  7. 7.
    Lia, D., Pedrycz, W.: A central profile-based 3D face pose estimation. Pattern Recogn. 47(2), 525–534 (2014)CrossRefGoogle Scholar
  8. 8.
    Liao, H., Shejie, L., Wang, D.: Tied factor analysis for unconstrained face pose classification. Optik Int. J. Light Electron Opt. 127(23), 11553–11566 (2016)CrossRefGoogle Scholar
  9. 9.
    Liu, Y., Xie, Z., Yuan, X., Chen, J., Song, W.: Multi-level structured hybrid forest for joint head detection and pose estimation. Neurocomputing 266, 206–215 (2017)CrossRefGoogle Scholar
  10. 10.
    Osadchy, M., Cun, Y.L., Miller, M.L.: Synergistic face detection and pose estimation with energy-based models. J. Mach. Learn. Res. 8(May), 1197–1215 (2007)Google Scholar
  11. 11.
    Patacchiola, M., Cangelosi, A.: Head pose estimation in the wild using Convolutional Neural Networks and adaptive gradient methods. Pattern Recognit. 71, 132–143 (2017)CrossRefGoogle Scholar
  12. 12.
    Ranjan, R., Patel, V.M., Chellappa, R.: Hyperface: a deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2017)Google Scholar
  13. 13.
    Ahn, B., Choi, D.-G., Park, J., Kweon, I.S.: Real-time head pose estimation using multi-task deep neural network. In: Robotics and Autonomous Systems, vol. 103, pp. 1–12, May 2018CrossRefGoogle Scholar
  14. 14.
    Aghajanian, J., Prince, S.: Face pose estimation in uncontrolled environments. In: BMVC, vol. 1, no. 2, p. 3, September 2009Google Scholar
  15. 15.
    Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2879–2886. IEEE, June 2012Google Scholar
  16. 16.
    Samet, H.: The quadtree and related hierarchical data structures. ACM Comput. Surv. (CSUR) 16(2), 187–260 (1984)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I-I. IEEE (2001)Google Scholar
  18. 18.
    Kaemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regression trees. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)Google Scholar
  19. 19.
  20. 20.
    Gourier, N., Hall, D., Crowley, J.L.: Estimating face orientation from robust detection of salient facial features. In: Proceedings of Pointing 2004, ICPR, International Workshop on Visual Observation of Deictic Gestures, Cambridge, UKGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Paola Barra
    • 1
  • Carmen Bisogni
    • 1
  • Michele Nappi
    • 1
  • Stefano Ricciardi
    • 2
    Email author
  1. 1.Department of InformaticsUniversity of SalernoFiscianoItaly
  2. 2.Department of BiosciencesUniversity of MoliseCampobassoItaly

Personalised recommendations