Advertisement

Introduction: The Rise of Memetics in Computing

  • Abhishek GuptaEmail author
  • Yew-Soon Ong
Chapter
Part of the Adaptation, Learning, and Optimization book series (ALO, volume 21)

Abstract

The word meme was coined in a sociological context by Richard Dawkins in his 1976 book The Selfish Gene. Drawing an analogy to our understanding of genes as basic units of biological heredity, the concept of memes was introduced for representing basic units of cultural information transfer. In other words, the new science of memetics serves as a means of explaining the propagation of information through and across populations, leading to the proliferation of ideas, catch-phrases, fashions, behavioral patterns, etc., based on principles similar to that of Darwinian evolution. Indeed, genetics combined with the notion of memes provides a way to understand the biological evolution of populations in conjunction with their observed behavioral and cultural traits. Interestingly, the implications of the underlying principles are not merely restricted to the realm of sociology and evolutionary biology, but have also penetrated the field of computer science, particularly enriching the nature-inspired subfield of computational intelligence. However, it is worth noting that while algorithms mimicking facets of genetic evolution have been around for several decades, it is still early days for memetics in this regard.

References

  1. 1.
    Dawkins, R. (1976). The selfish gene. Oxford University Press.Google Scholar
  2. 2.
    Engelbrecht, A. P. (2007). Computational intelligence: An introduction. New York: Wiley.Google Scholar
  3. 3.
    Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning, 1989. Reading: Addison-Wesley.Google Scholar
  4. 4.
    Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection (Vol. 1). MIT Press.Google Scholar
  5. 5.
    Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). New York: Wiley.Google Scholar
  6. 6.
    Gilli, M., & Schumann, E. (2014). Optimization cultures. Wiley Interdisciplinary Reviews: Computational Statistics, 6(5), 352–358.CrossRefGoogle Scholar
  7. 7.
    Spencer, H. (1864). The principles of biology (Vols. 2) London: Williams and Norgate. (System of synthetic philosophy, 2).Google Scholar
  8. 8.
    Darwin, C. (1859). On the origin of species.Google Scholar
  9. 9.
    Rechenberg, I. (1994). Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. frommann-holzbog, Stuttgart, 1973.Google Scholar
  10. 10.
    Schwefel, H. P. (1977). Numerische optimierung von computer-modellen mittels der evolutionsstrategie (Vol. 1). Switzerland: Birkhäuser, Basel.CrossRefGoogle Scholar
  11. 11.
    Altenberg, L. (1995). The schema theorem and Price’s theorem. Foundations of Genetic Algorithms, 3, 23–49.Google Scholar
  12. 12.
    Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4), 28–39.CrossRefGoogle Scholar
  13. 13.
    Kennedy, J. (2011). Particle swarm optimization. In Encyclopedia of machine learning (pp. 760–766). Springer US.Google Scholar
  14. 14.
    Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Tayarani-N, M. H., Yao, X., & Xu, H. (2015). Meta-heuristic algorithms in car engine design: a literature survey. IEEE Transactions on Evolutionary Computation, 19(5), 609–629.CrossRefGoogle Scholar
  16. 16.
    Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech concurrent computation program, C3P Report, 826.Google Scholar
  17. 17.
    Moscato, P., & Cotta, C. (2010). A modern introduction to memetic algorithms. In Handbook of metaheuristics (pp. 141–183). Springer US.Google Scholar
  18. 18.
    Lim, D., Ong, Y. S., Gupta, A., Goh, C. K., & Dutta, P. S. (2016). Towards a new Praxis in optinformatics targeting knowledge re-use in evolutionary computation: simultaneous problem learning and optimization. Evolutionary Intelligence, 9(4), 203–220.CrossRefGoogle Scholar
  19. 19.
    Chen, X., Ong, Y. S., Lim, M. H., & Tan, K. C. (2011). A multi-facet survey on memetic computation. IEEE Transactions on Evolutionary Computation, 15(5), 591–607.CrossRefGoogle Scholar
  20. 20.
    Ong, Y. S., Lim, M. H., & Chen, X. (2010). Memetic computation—past, present & future (research frontier). IEEE Computational Intelligence Magazine, 5(2), 24–31.CrossRefGoogle Scholar
  21. 21.
    Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Introduction to NP-completeness of Knapsack problems. In Knapsack problems (pp. 483–493). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  22. 22.
    Krasnogor, N., Blackburne, B. P., Burke, E. K., & Hirst, J. D. (2002, September). Multimeme algorithms for protein structure prediction. In PPSN (pp. 769–778).CrossRefGoogle Scholar
  23. 23.
    Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.CrossRefGoogle Scholar
  24. 24.
    Ong, Y. S., & Keane, A. J. (2004). Meta-Lamarckian learning in memetic algorithms. IEEE Transactions on Evolutionary Computation, 8(2), 99–110.CrossRefGoogle Scholar
  25. 25.
    Le, M. N., Ong, Y. S., Jin, Y., & Sendhoff, B. (2012). A unified framework for symbiosis of evolutionary mechanisms with application to water clusters potential model design. IEEE Computational Intelligence Magazine, 7(1), 20–35.CrossRefGoogle Scholar
  26. 26.
    Chen, X., & Ong, Y. S. (2012). A conceptual modeling of meme complexes in stochastic search. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(5), 612–625.CrossRefGoogle Scholar
  27. 27.
    Zhou, Z., Ong, Y. S., Lim, M. H., & Lee, B. S. (2007). Memetic algorithm using multi-surrogates for computationally expensive optimization problems. Soft Computing-A Fusion of Foundations, Methodologies and Applications, 11(10), 957–971.Google Scholar
  28. 28.
    Gupta, A., Ong, Y. S., & Feng, L. (2018). Insights on transfer optimization: Because experience is the best teacher. IEEE Transactions on Emerging Topics in Computational Intelligence, 2(1), 51–64.CrossRefGoogle Scholar
  29. 29.
    Min, A. T. W., Ong, Y. S., Gupta, A., & Goh, C. K. (2017). Multi-problem surrogates: Transfer evolutionary multiobjective optimization of computationally expensive problems. IEEE Transactions on Evolutionary Computing.Google Scholar
  30. 30.
    Gupta, A., Ong, Y. S., & Feng, L. (2017). Multifactorial evolution: toward evolutionary multitasking. IEEE Transactions on Emerging Topics in Computational Intelligence.Google Scholar
  31. 31.
    Bonyadi, M. R., Michalewicz, Z., Neumann, F., & Wagner, M. (2016). Evolutionary computation for multicomponent problems: Opportunities and future directions. arXiv preprint arXiv:1606.06818.
  32. 32.
    Feng, L., Gupta, A., & Ong, Y. S. (2017). Compressed representation for higher-level meme space evolution: A case study on big knapsack problems. Memetic Computing, 1–15.Google Scholar
  33. 33.
    Hodgson, G. M. (2005). Generalizing Darwinism to social evolution: Some early attempts. Journal of Economic Issues, 39(4), 899–914.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.School of Computer Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations