Advertisement

The Initial Decision Matrix (IDM) and Its Fundamental Role in Modelling a Scenario

  • Nolberto Munier
  • Eloy Hontoria
  • Fernando Jiménez-Sáez
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 275)

Abstract

This chapter is mainly devoted to a critical task: modelling a scenario. It addresses two main aspects:
  1. (a)

    Elements of the IDM

     
  2. (b)

    How to model a scenario

     

Naturally, it is impossible in the second aspect to deal with the innumerable cases that correspond to a myriad of different projects and scenarios. The chapter aims at providing as much information as possible and as being a guide for the practitioner. It condenses conclusions from the examination of many cases proposed by researchers and practitioners around the world and using different methods and procedures. From here, the authors extracted critical aspects that should be considered. All these points lead to the formulation of a sound and realistic modelling that replicates a scenario as close as possible.

References2

  1. Al-Aomar R (2010) A combined AHP-Entropy method for deriving subjective and objective criteria weights. Int J Ind Eng 17(1):12–24Google Scholar
  2. *Beasley J (2018) OR – Notes - http://people.brunel.ac.uk/~mastjjb/jeb/or/contents.html. Accessed 5 Feb 2018
  3. Belton V, Gear AE (1983) On a shortcoming of Saaty’s method of analytic hierarchies. Omega 11:228–230CrossRefGoogle Scholar
  4. Cascales M-T, Lamata M-T (2012) On rank reversal and TOPSIS method. Math Comput Model 56(5–6):123–132CrossRefGoogle Scholar
  5. Dantzig G (1948) Linear Programming and extensions - R-366-PR- CorporationGoogle Scholar
  6. Eppe S, De Smet Y (2015) On the influence of altering de action set on PROMETHEE’s II relative ranks. CoDE-SMG - Technical Report Series Technical Report No. TR/SMG/2015-002 March 2015 – Université Libre de BruxellesGoogle Scholar
  7. Felli J, Hazen G (1997) Sensitivity analysis and the expected value of perfect information. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.3737&rep=rep1&type=pdf- Accessed 5 Feb 2018
  8. Greco S (2006) Multiple criteria decision analysis: state of the art surveys. University of Catania, Springer sourceGoogle Scholar
  9. Hwang C, Yoon K (1981) Multiple attribute decision making: methods and applications, A State- of - the - Art survey. Springer, BerlinCrossRefGoogle Scholar
  10. Jansen B, De Jong J, Roos C, Terlaky T (1997) Sensitivity analysis in linear programming: just be careful! Eur J Oper Res 101(1):15–28CrossRefGoogle Scholar
  11. Kantorovich L (1939) Mathematical methods of organizing and planning production. Manag Sci 6(4):366–422. (1960).CrossRefGoogle Scholar
  12. *Li S (2010) Rank reversal in properties in multicriteria decision making models. Ph.D. Thesis, University of BirminghamGoogle Scholar
  13. Maleki H, Zahir S (2013) A comprehensive literature review of the rank reversal phenomenon in the analytic hierarchy process. J Multi-Criteria Decis Anal 20(3–4):141–155CrossRefGoogle Scholar
  14. Mareschal B, De Smet Y, Nemery P (2008) Rank reversal in the PROMETHEE II method: some new results. Conference: Industrial Engineering and Engineering Management, 2008. IEEM 2008. IEEE International ConferenceGoogle Scholar
  15. Munier N (2011a) Methodology to select a set of urban sustainability indicators to measure the state of the city, and performance assessment. Ecol Indic 11(5):1020–1026.  https://doi.org/10.1016/j.ecolind.2011.01.006 CrossRefGoogle Scholar
  16. Munier N (2011b) a. Tesis Doctoral - Procedimiento fundamentado en la Programación Lineal para la selección de alternativas en proyectos de naturaleza compleja y con objetivos múltiples- Universidad Politécnica de Valencia, EspañaGoogle Scholar
  17. Munier N (2015) The Z matrix applied to risk determination. Internal report- INGENIO-Universidad Politécnica de Valencia, EspañaGoogle Scholar
  18. Nijkamp P (1977) Stochastic quantitative and qualitative multicriteria analysis for environmental design. Papers of the Regional Science Association 39:175–199CrossRefGoogle Scholar
  19. Pomerol J-C, Romero S (2000) Multicriterion decision in management: principles and practice. Boston - Kluwer Academic Publishers, BostonCrossRefGoogle Scholar
  20. Saaty T (1987) Rank generation, preservation, and reversal in the analytic hierarchy decision process. Decis Sci 18:157–117CrossRefGoogle Scholar
  21. Saaty T, Sagir M (2009) An essay on rank preservation and reversal. Math Comput Model 46(5–6):930–941Google Scholar
  22. *Saaty T, Vargas L (1984) The legitimacy of rank reversal. Omega 12(5):513–516CrossRefGoogle Scholar
  23. Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27:379.423, 623.656CrossRefGoogle Scholar
  24. Shing Y, Lee S, Ghun S, Chung D (2013) A critical review of popular multi-criteria decision-making methodologies. Issues in Information Systems 14(1):358–365Google Scholar
  25. Triantaphyllou E (2001) Two new cases of rank reversals when the AHP and some of its additive variants are used that do not occur with the multiplicative AHP. J Multicrit Decis Anal 10:11–25CrossRefGoogle Scholar
  26. Verly C, De Smet Y (2013) Some results about rank reversal instances in the PROMETHEE methods. Int J Multicrit Decis Mak 3(3):325–345CrossRefGoogle Scholar
  27. *Wang YM, Elhag TMS (2006) An approach to avoiding rank reversal in AHP. Decis Support Syst 42:1474–1480CrossRefGoogle Scholar
  28. Wang Y, Luo Y (2009) On rank reversal in decision analysis. Math Comput Model 49(5–6):1221–1229CrossRefGoogle Scholar
  29. *Wang X, Triantaphyllou E (2006) Ranking irregularities when evaluating alternatives by using some multi-criteria decision analysis methods. Handbook of industrial and system engineering. CRC Press/Taylor & Francis Group, Boca RatonGoogle Scholar
  30. Zeleny M (1974) A concept of compromise solutions and the method of the displaced ideal. Comput Oper Res 1(3–4):479–496CrossRefGoogle Scholar
  31. *Zeleny M (1982) Multiple criteria decision making. McGraw-Hill, New YorkGoogle Scholar
  32. Zopounidis C, Pardalos P (2010) Handbook of multicriteria analysis. Springer, HeidelbergCrossRefGoogle Scholar
  33. Alinezhad A, Amini A (2011) Sensitivity analysis on TOPSIS technique: the result of change in the weights of one attribute on the final ranking of alternatives. J Optimization Ind Eng 7:23–28Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nolberto Munier
    • 1
  • Eloy Hontoria
    • 2
  • Fernando Jiménez-Sáez
    • 3
  1. 1.INGENIO, Polytechnic University of ValenciaKingstonCanada
  2. 2.Universidad Politécnica de CartagenaCartagenaSpain
  3. 3.Universidad Politécnica de ValenciaValenciaSpain

Personalised recommendations