Advertisement

Radiotherapy for Uterine Cervical Cancer

  • Edward Chandy
  • Gemma EminowiczEmail author
Chapter

Abstract

Uterine cervical cancer is an important health burden worldwide despite primary and secondary prevention measures in developed countries. Radiotherapy is a critical aspect of treatment with important roles in locally advanced disease as well as metastatic disease. A combination of external beam radiotherapy (EBRT) and brachytherapy, with chemotherapy if fitness allows, can be used to curatively treat locally advanced disease (FIGO stage IB1 to IVA). In the metastatic setting, radiotherapy to the primary tumor or metastases can effectively palliate symptoms such as pain or bleeding. EBRT uses photons to deliver radiation dose from a linear accelerator that is external to the patient, whereas brachytherapy uses radioactive material (e.g., iridium 192 for high-dose rate (HDR) brachytherapy) to deliver radiation dose to short distances from inside the patient. EBRT can be delivered using two-dimensional radiotherapy (2D-RT), three-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) depending upon resources and skills available. This chapter describes the EBRT techniques currently used in the curative and palliative setting including the practical application, doses, evidence, and toxicities. Brachytherapy will also be detailed including image-guided brachytherapy.

Keywords

Cervix cancer Radiotherapy Pelvic radiotherapy Brachytherapy MR-guided brachytherapy Image-guided brachytherapy Recurrent disease Dose escalation Para-aortic 

References

  1. 1.
  2. 2.
    Abdel-Wahab M, Fidarova E, Polo A. Global access to radiotherapy in low- and middle-income countries. Clin Oncol. 2017;29(2):99–104.CrossRefGoogle Scholar
  3. 3.
    Colombo N, et al. Cervical cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up ESMO Guidelines Working Group. Ann Oncol. 2012;23(suppl_7):vii27–32.Google Scholar
  4. 4.
    Lax S. Histopathology of cervical precursor lesions and cancer. Acta Dermatovenerol Alp Pannonica Adriat. 2011;20(3):125–33.PubMedGoogle Scholar
  5. 5.
    Cleary C, et al. Biological features of human papillomavirus-related head and neck cancers contributing to improved response. Clin Oncol. 2016;28(7):467–74.CrossRefGoogle Scholar
  6. 6.
    Ramirez PT, Jhingran A, Macapiniac HA, et al. Laparoscopic extraperitoneal para-aortic lymphadenectomy in locally advanced cervical cancer: a prospective correlation of surgical findings with positron emission tomography/computed tomography findings. Cancer. 2011;117:1928–34.CrossRefGoogle Scholar
  7. 7.
    Moscucci O. The “ineffable freemasonry of sex”: feminist surgeons and the establishment of radiotherapy in early twentieth-century Britain. Bull Hist Med. 2007;81(1):139–63.CrossRefGoogle Scholar
  8. 8.
    Withers HR. The four R’s of radiotherapy. Adv Radiat Biol. 1975;5:241–71.CrossRefGoogle Scholar
  9. 9.
    Radiotherapy Dose Fractionation Second Edition Gynaecological Cancers Royal College of Radiologists. 2016.Google Scholar
  10. 10.
    Taylor A, Rockall AG, Reznek RH, Powell ME. Mapping pelvic lymph nodes: guidelines for delineation in intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63(5):1604–12. Epub 2005 Sep 29.CrossRefGoogle Scholar
  11. 11.
    Hasselle MD, Rose BS, Kochanski JD, Nath SK, Bafana R, Yashar CM, Hasan Y, Roeske JC, Mundt AJ, Mell LK. Clinical outcomes of intensity-modulated pelvic radiation therapy for carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 2011;80(5):1436–45.  https://doi.org/10.1016/j.ijrobp.2010.04.041. Epub 2010 Aug 12.CrossRefPubMedGoogle Scholar
  12. 12.
    Mundt AJ, Mell LK, Roeske JC. Preliminary analysis of chronic gastrointestinal toxicity in gynecology patients treated with intensity-modulated whole pelvic radiation therapy. Int J Radiat Oncol Biol Phys. 2003;56(5):1354–60.CrossRefGoogle Scholar
  13. 13.
    Mundt AJ, Lujan AE, Rotmensch J, Waggoner SE, Yamada SD, Fleming G, Roeske JC. Intensity-modulated whole pelvic radiotherapy in women with gynecologic malignancies. Int J Radiat Oncol Biol Phys. 2002;52(5):1330–7.CrossRefGoogle Scholar
  14. 14.
    Meta-analysis Collaboration (CCCMAC). Reducing uncertainties about the effects of chemoradiotherapy for cervical cancer: individual patient data meta-analysis. Chemoradiotherapy for Cervical Cancer Meta-analysis Collaboration (CCCMAC). Cochrane Database Syst Rev. 2010;(1):CD008285.  https://doi.org/10.1002/14651858.CD008285. Review.
  15. 15.
    Liu R, Wang X, Tian JH, Yang K, Wang J, Jiang L, Hao XY. High dose rate versus low dose rate intracavity brachytherapy for locally advanced uterine cervix cancer. Cochrane Database Syst Rev. 2014;2014(10):CD007563.  https://doi.org/10.1002/14651858.CD007563.pub3.CrossRefGoogle Scholar
  16. 16.
    Stewart AJ, Viswanathan AN. Current controversies in high-dose-rate versus low-dose-rate brachytherapy for cervical cancer. Cancer. 2006;107:908–15.  https://doi.org/10.1002/cncr.22054.CrossRefPubMedGoogle Scholar
  17. 17.
    Viswanathan AN, Moughan J, Small W, et al. The quality of cervical cancer brachytherapy implantation and the impact on local recurrence and disease-free survival in RTOG prospective trials 0116 and 0128. Int J Gynecol Cancer. 2012;22(1):123–31.  https://doi.org/10.1097/IGC.0b013e31823ae3c9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Potter R, et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy—3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol. 2006 Jan;78(1):67–77.CrossRefGoogle Scholar
  19. 19.
    Landoni F, Maneo A, Colombo A, et al. Randomised study of radical surgery versus radiotherapy for stage Ib-IIa cervical cancer. Lancet. 1997;350(9077):535–40.CrossRefGoogle Scholar
  20. 20.
    Rotman M, Sedlis A, Piedmonte MR, et al. A phase III randomized trial of postoperative pelvic irradiation in stage IB cervical carcinoma with poor prognostic features: follow-up of a gynecologic oncology group study. Int J Radiat Oncol Biol Phys. 2006;65:169–76.CrossRefGoogle Scholar
  21. 21.
    Rogers L, Siu SSN, Luesley D, Bryant A, Dickinson HO. Radiotherapy and chemoradiation after surgery for early cervical cancer. Cochrane Database Syst Rev. 2012;5:CD007583.  https://doi.org/10.1002/14651858.CD007583.pub3.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bilek K, Ebeling K, Leitsmann H, Seidel G. Radical pelvic surgery versus radical surgery plus radiotherapy for stage IB carcinoma of the cervix uteri: preliminary results of a prospective randomised clinical study. Archiv fur Geschwulstforschung. 1982;52(3):223–9.PubMedGoogle Scholar
  23. 23.
    Peters WA III, Liu PY, Barrett RJ II, Stock RJ, Monk BJ, Berek JS, Souhami L, Grigsby P, Gordon W Jr, Alberts DS. Concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk early-stage cancer of the cervix. J Clin Oncol. 2000;18(8):1606–13.CrossRefGoogle Scholar
  24. 24.
    Yamashita H, Okuma K, Kawana K, Nakagawa S, Oda K, Yano T, Kobayashi S, Wakui R, Ohtomo K, Nakagawa K. Am J Clin Oncol. 2010;33(6):583–6.CrossRefGoogle Scholar
  25. 25.
    Han K, Milosevic M, Fyles A, et al. Evidence of improved survival surveillance, epidemiology, and end results (SEER) database trends in the utilization of brachytherapy in cervical cancer in the United States. Int J Radiat Oncol Biol Phys. 2013;87:111.CrossRefGoogle Scholar
  26. 26.
    Tanderup K, Fokdal LU, Sturdza A, et al. Effect of tumor dose, volume and overall treatment time on local control after radiochemotherapy including MRI guided brachytherapy of locally advanced cervical cancer. Radiother Oncol. 2016;120(3):441–6.  https://doi.org/10.1016/j.radonc.2016.05.014. Epub 2016 Jun 24.CrossRefPubMedGoogle Scholar
  27. 27.
    MacDonald OK, et al. Prognostic significance of histology and positive lymph node involvement following radical hysterectomy in carcinoma of the cervix. Am J Clin Oncol. 2009;32(4):411–6.  https://doi.org/10.1097/COC.0b013e31819142dc.CrossRefPubMedGoogle Scholar
  28. 28.
    Hoskin PJ, Goh V. Radiotherapy in practice: imaging. Oxford: Oxford University Press; 2010.CrossRefGoogle Scholar
  29. 29.
    Vargo JA, et al. Extended field intensity modulated radiation therapy with concomitant boost for lymph node–positive cervical cancer: analysis of regional control and recurrence patterns in the positron emission tomography/computed tomography era. Int J Radiat Oncol Biol Phys. 2014 Dec 1;90(5):1091–8.CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Cihoric N, Tapia C, Krüger K, Aebersold DM, Klaeser B, Lössl K. IMRT with 18FDG-PET\CT based simultaneous integrated boost for treatment of nodal positive cervical cancer. Radiat Oncol. 2014;9:83.  https://doi.org/10.1186/1748-717X-9-83.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Perez CA, Grigsby PW, Castro-Vita H, Lockett MA. Carcinoma of the uterine cervix. Impact of prolongation of overall treatment time and timing of brachytherapy on outcome of radiation therapy. Int J Radiat Oncol Biol Phys. 1995;32(5):1275–88.CrossRefGoogle Scholar
  33. 33.
    Song S, Rudra S, Hasselle MD, Dorn PL, Mell LK, Mundt AJ, Yamada SD, Lee NK, Hasan Y. The effect of treatment time in locally advanced cervical cancer in the era of concurrent chemoradiotherapy. Cancer. 2013;119:325–31.  https://doi.org/10.1002/cncr.27652.CrossRefPubMedGoogle Scholar
  34. 34.
    Fyles A, Keane TJ, Barton M, Simm J. The effect of treatment duration in the local control of cervix cancer. J Radiother Oncol. 1992;25(4):273–9.CrossRefGoogle Scholar
  35. 35.
    Chen SW, Liang JA, Yang SN, et al. The adverse effect of treatment prolongation in cervical cancer by high-dose-rate intracavitary brachytherapy. Radiother Oncol. 2003;67:69.CrossRefGoogle Scholar
  36. 36.
    Evans JC, Per Bergsjfø. The influence of Anemia on the results of radiotherapy in carcinoma of the cervix. Radiology. 1965;84:709–17.  https://doi.org/10.1148/84.4.709.CrossRefPubMedGoogle Scholar
  37. 37.
    Grogan M, Thomas GM, Melamed I, Wong FL, Pearcey RG, Joseph PK, Portelance L, Crook J, Jones KD. The importance of hemoglobin levels during radiotherapy for carcinoma of the cervix. Cancer. 1999;86(8):1528–36.CrossRefGoogle Scholar
  38. 38.
    Goubran HA, Elemary M, Radosevich M, Seghatchian J, El-Ekiaby M, Burnouf T. Impact of transfusion on cancer growth and outcome. Cancer Growth Metastasis. 2016;9:1–8.  https://doi.org/10.4137/CGM.S32797.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Peppone LJ, Mustian KM, Morrow GR, et al. The effect of cigarette smoking on cancer treatment-related side effects. Oncologist. 2011;16(12):1784–92.  https://doi.org/10.1634/theoncologist.2011-0169.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Fawaz ZS, Barkati M, Beauchemin M-C, Sauthier P, Gauthier P, Nguyen TV. Cervical necrosis after chemoradiation for cervical cancer: case series and literature review. Radiat Oncol (Lond Eng). 2013;8:220.  https://doi.org/10.1186/1748-717X-8-220.CrossRefGoogle Scholar
  41. 41.
    Gadducci A, Tana R, Cosio S, Cionini L. Treatment options in recurrent cervical cancer (review). Oncol Lett. 2010;1(1):3–11.  https://doi.org/10.3892/ol_00000001.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Friedlander M, Grogan M. Guidelines for the treatment of recurrent and metastatic cervical cancer. U.S. Preventative Services Task Force. Oncologist. 2002;7(4):342–7.Google Scholar
  43. 43.
    Jain P, Hunter RD, Livsey JE, Coyle C, Swindell R, Davidson SE. Salvaging locoregional recurrence with radiotherapy after surgery in early cervical cancer. Clin Oncol (R Coll Radiol). 2007;19(10):763–8.CrossRefGoogle Scholar
  44. 44.
    Chou HH, Wang CC, Lai CH, Hong JH, Ng KK, Chang TC, Tseng CJ, Tsai CS, Chang JT. Isolated paraaortic lymph node recurrence after definitive irradiation for cervical carcinoma. Int J Radiat Oncol Biol Phys. 2001;51:442–8.CrossRefGoogle Scholar
  45. 45.
    Grigsby PW, Vest ML, Perez CA. Recurrent carcinoma of the cervix exclusively in the paraaortic nodes following radiation therapy. Int J Radiat Oncol Biol Phys. 1994;28:451–5.CrossRefGoogle Scholar
  46. 46.
    Park HJ, et al. Stereotactic body radiotherapy for recurrent or oligometastatic uterine cervix Cancer: a cooperative study of the Korean Radiation Oncology Group (KROG 14-11). Anticancer Res. 2015;35(9):5103–10.PubMedGoogle Scholar
  47. 47.
    Van Lonkhuijzen L, Thomas G. Palliative radiotherapy for cervical carcinoma, a systematic review. 2011. In: Database of abstracts of reviews of effects (DARE): quality-assessed reviews [internet]. York: Center for Reviews and Dissemination; 1995.Google Scholar
  48. 48.
    Sze WM, Shelley MD, Held I, et al. Palliation of metastatic bone pain: single fraction versus multifraction radiotherapy. A systematic review of randomised trials. 2003. In: Database of abstracts of reviews of effects (DARE): quality-assessed reviews [internet]. York: Center for Reviews and Dissemination; 1995.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Clinical Oncology DepartmentCharing Cross HospitalLondonUK
  2. 2.Department of Clinical Oncology/RadiotherapyHammersmith Hospital, Imperial College Healthcare NHS TrustLondonUK

Personalised recommendations