Laser-Based Interferometric Techniques for the Study of Musical Instruments

  • Efthimios Bakarezos
  • Yannis Orphanos
  • Evaggelos Kaselouris
  • Vasilios DimitriouEmail author
  • Michael Tatarakis
  • Nektarios A. PapadogiannisEmail author
Part of the Current Research in Systematic Musicology book series (CRSM, volume 5)


Laser-based interferometry techniques for the study of musical instruments are discussed in this chapter. The presented work demonstrates the advantages that the laser-based optical techniques provide and is mainly focused on the capabilities of the Electronic Speckle Pattern Interferometry (ESPI). The mathematical description of the time-average ESPI, the reading of the contour lines and the overcoming of the limitations of amplitude and phase vibration are analyzed. Furthermore, four representative studies using the ESPI for a Cretan Lyra, a Bendir, a classical Guitar and the ancient Greek lyra Chelys, are presented and demonstrate the capabilities of the method.


  1. 1.
    Backus J (1977) The acoustical foundations of music. W.W. Norton & Co, New YorkGoogle Scholar
  2. 2.
    Bakarezos E, Vathis V, Brezas S, Orphanos Y, Papadogiannis NA (2012) Acoustics of the Chelys—an ancient Greek tortoise-shell lyre. Appl Acoust 73:478–483CrossRefGoogle Scholar
  3. 3.
    Bakarezos M, Gimnopoulos S, Brezas S, Orfanos Υ, Maravelakis E, Papadopoulos CI, Tatarakis M, Antoniadis A, Papadogiannis NA (2006) Vibration analysis of the top plates of traditional Greek string musical instruments. In: Eberhardsteiner J, Mang HA, Waubke H (eds) The thirteenth international congress on sound and vibration, Vienna, AustriaGoogle Scholar
  4. 4.
    Bakarezos E, Orphanos Y, Kaselouris E, Dimitriou V, Tatarakis M, Papadogiannis NA (2018) Application of laser interferometric methods for studying traditional and ancient Greek music instruments. In: Proceedings of the 9th panhellenic conference acoustics 2018, Patras, GreeceGoogle Scholar
  5. 5.
    Baker LR (1983) Holographic and speckle interferometry. Optica Acta Int J Opt 30:1041CrossRefGoogle Scholar
  6. 6.
    Castellini P, Revel GM, Tomasini EP (2006) Laser Doppler vibrometry: development of advanced solutions answering to technology’s needs. Mech Syst Signal Pr 20:1265–1285CrossRefGoogle Scholar
  7. 7.
    Chartofylakas L, Bakarezos E, Orphanos Y, Papadogiannis ΝΑ (2008) Connecting the acoustic characteristics of the structure of the Cretan lyra with the quality of the emitted sound. In: Proceedings of the 4th panhellenic conference acoustics 2008, Xanthi, Greece, pp 182–191Google Scholar
  8. 8.
    Chartofylakas L, Floros A, Bakarezos E, Papadogiannis NA (2010) Acoustic and sound analysis of the instruments of the bouzouki family. In: Proceedings of the 5th panhellenic conference acoustics 2010, Athens, Greece, pp 422–428Google Scholar
  9. 9.
    Fletcher NH, Rossing TD (1999) The physics of musical instruments. Springer, New YorkGoogle Scholar
  10. 10.
    Gimnopoulos S, Bakarezos Μ, Vathis V, Chartofylakas L, Brezas S, Orphanos Y, Maravelakis E, Papadopoulos CI, Tatarakis M, Antoniadis A, Papadogiannis NA (2006) Acoustic and interferometric analysis of the Cretan lyre. In: Proceedings of the 3rd panhellenic conference acoustics 2006, Heraklion, Greece, pp 239–246Google Scholar
  11. 11.
    Gimnopoulos S, Kouzoupis S, Bakarezos Μ, Orfanos Y, Tatarakis Μ, Papadogiannis NA (2004) Vibrational analysis of Greek string instruments top plates: preliminary experimental results using mechanical and laser optical techniques. In: Proceedings of the 2nd panhellenic conference acoustics 2004, Thessaloniki, Greece, pp 93–100Google Scholar
  12. 12.
    Huang C-H, Ma C-C (2001) Experimental and numerical investigations of resonant vibration characteristics for piezoceramic plates. J Acoust Soc Am 109:2780–2788CrossRefGoogle Scholar
  13. 13.
    Jansson E, Molin N-E, Saldner HO (1994) On eigenmodes of the violin—electronic holography and admittance measurements. J Acoust Soc Am 95:1100–1105CrossRefGoogle Scholar
  14. 14.
    Jones R, Wykes C (1989) Holographic and speckle interferometry. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  15. 15.
    Kokkinakis E (2013) Finite element modeling simulation of the acoustic behaviour and characteristics of a drum. BSc Thesis, Department of Music Technology & Acoustics Engineering, TEI CreteGoogle Scholar
  16. 16.
    Lökberg O (1984) ESPI—the ultimate holographic tool for vibration analysis? J Acoust Soc Am 75:1783–1791Google Scholar
  17. 17.
    Molin N-E (1999) Applications of whole field interferometry in mechanics and acoustics. Opt Lasers Eng 31:93–111CrossRefGoogle Scholar
  18. 18.
    Rastogi PK (ed) (2001) Digital speckle pattern interferometry and related techniques. Wiley, ChichesterGoogle Scholar
  19. 19.
    Runnemalm A, Molin N-E, Jansson E (2000) On operating deflection shapes of the violin including in-plane motions. J Acoust Soc Am 107:3452–3459CrossRefGoogle Scholar
  20. 20.
    Sharp B (1989) Electronic speckle pattern interferometry (ESPI). Opt Lasers Eng 11:241–255CrossRefGoogle Scholar
  21. 21.
    Sidiras G, Kokkinakis E, Orphanos Y, Bakarezos E, Kaselouris E, Dimitriou V, Papadogiannis NA (2014) Vibrational features of traditional percussion music instruments using laser and numerical simulations. In: Proceedings of the 7th panhellenic conference acoustics 2014, Thessaloniki, Greece, pp 12–19Google Scholar
  22. 22.
    Sidiras G (2013) Investigation of vibrational features in traditional percussion music instruments by using optical interferometry techniques, BSc Thesis, Department of Music Technology & Acoustics Engineering, TEI CreteGoogle Scholar
  23. 23.
    Theodosopoulou I, Chartofylakas L, Bakarezos M, Orphanos Y, Papadogiannis NA (2009) The Cretan lyre: an ethnomusicological and music acoustics approach. In: Proceedings of the CIM09, pp 172–174Google Scholar
  24. 24.
    Vathis V, Bakarezos E, Orphanos Y, Papadogiannis ΝΑ (2008) Acoustic study of the faithful reconstruction of the ancient Greek Chelys lyre. In: Proceedings of the 4th panhellenic conference acoustics 2008, Xanthi, Greece, pp 173–181Google Scholar
  25. 25.
    Wang CP (1988) Laser Doppler velocimetry. J Quant Spectrosc Radiat Transfer 40:309–319CrossRefGoogle Scholar
  26. 26.
    Wang W-C, Hwang C-H, Lin S-Y (1996) Vibration measurement by the time-averaged electronic speckle pattern interferometry methods. Appl Opt 35:4502–4509CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Efthimios Bakarezos
    • 1
    • 2
  • Yannis Orphanos
    • 1
    • 2
  • Evaggelos Kaselouris
    • 2
  • Vasilios Dimitriou
    • 2
    Email author
  • Michael Tatarakis
    • 2
  • Nektarios A. Papadogiannis
    • 1
    • 2
    Email author
  1. 1.Department of Music Technology & Acoustics EngineeringSchool of Applied Sciences, TEI of CreteHeraklionGreece
  2. 2.School of Applied SciencesCentre for Plasma Physics and Lasers, TEI of CreteHeraklionGreece

Personalised recommendations