Advertisement

Computational Music Archiving as Physical Culture Theory

  • Rolf BaderEmail author
Chapter
Part of the Current Research in Systematic Musicology book series (CRSM, volume 5)

Abstract

The framework of the Computational Music and Sound Archive (COMSAR) is discussed. The aim is to analyze and sort musical pieces of music from all over the world with computational tools. Its analysis is based on Music Information Retrieval (MIR) tools, the sorting algorithms used are Hidden-Markov models and self-organazing Kohonen maps (SOM). Different kinds of systematizations like taxonomies, self-organazing systems as well as bottom-up methods with physiological motivation are discussed, next to the basic signal-processing algorithms. Further implementations include musical instrument geometries with their radiation characteristics as measured by microphone arrays, as well as the vibrational reconstruction of these instruments using physical modeling. Practically the aim is a search engine for music which is based on musical parameters like pitch, rhythm, tonality, form or timbre using methods close to neuronal and physiological mechanisms. Still the concept also suggests a culture theory based on physical mechanisms and parameters, and therefore omits speculation and theoretical overload.

References

  1. 1.
    Schneider A (2018) Systematic musicology: a historical interdisciplinary perspective. In: Bader R (ed) Springer handbook of systematic musicology. Springer, Heidelberg, Berlin, pp 1–24Google Scholar
  2. 2.
    Schneider A (2006) Comparative and systematic musicology in relation to ethnomusicology: a historical and methodological survey. Ethnomusicology 50(2):236–258Google Scholar
  3. 3.
    Heins E, den Otter, E, van Lamsweerde F (1994) Jaap Kunst: traditional music and its interaction with the West, KIT PublishersGoogle Scholar
  4. 4.
    Hornbostel EMV, Sachs C (1914) Systematik der Musikinstrumente. Ein Versuch. Zeitschrift für Ethnologie 46:4–5, 553–590Google Scholar
  5. 5.
    Sachs C (1913) Real-Lexikon der Musikinstrumente: zugleich ein Polyglossar fr das gesamte Instrumentengebiet. Bard, BerlinGoogle Scholar
  6. 6.
    Andre R (1998) Elektronische Klnge und musikalische Entdeckungen [Electronic Sounds and musical discoveries]. Reclam, DitzingenGoogle Scholar
  7. 7.
    Schneider A (2001) Sound, pitch, and scale: from tone measurements to sonological analysis in ethnomusicology. Ethnomusicology 45(3):489–519CrossRefGoogle Scholar
  8. 8.
    Lomax A, Berkowitz N (1972) The evolutionary taxonomy of culture. Science 177(4045):228–239CrossRefGoogle Scholar
  9. 9.
    Lomax A (1976) Cantometrics: an approach to the anthropology of music. University of California Extension Media Center, BerkeleyGoogle Scholar
  10. 10.
    Bader R (2013) Nonlinearities and synchronization in musical acoustics and music psychology. In: Springer series current research in systematic musicology, vol 2. Springer, HeidelbergGoogle Scholar
  11. 11.
    Kostek B (2005) Perception-based data processing in acoustics. In: Applications to music information retrieval and psychophysiology of hearing, SpringerGoogle Scholar
  12. 12.
    Leman M, Carreras F (1997) Schema and gestalt: testing the hypothesis of psychoneural isomorphism by computer simulation. In: Leman M (ed) Music, gestalt, and computing studies in cognitive and systematic musicology. Springer, Berlin, pp 144–168CrossRefGoogle Scholar
  13. 13.
    Toiviainen P (ed) (2009) Musical similarity [Special issue]. Musicae Scientiae, vol 13(1 suppl)Google Scholar
  14. 14.
    Toiviainen P, Eerola T (2001) A method for comparative analysis of folk music based on musical feature extraction and neural networks. In: Lappalainen H (ed) Proceedings of the VII international symposium of systematic and comparative musicology and the III international conference on cognitive musicology. University of Jyvskyl, Jyvskyl, pp 41–45Google Scholar
  15. 15.
    Downie JS (2003) Music information retrieval. Annual Rev Inf Sci Technol 37:295–340. http://music-ir.org/downie_mir_arist37.pdfCrossRefGoogle Scholar
  16. 16.
    Fingerhut M (2004) Music information retrieval, or how to search for (and maybe find) music and do away with incipits. In: Proceedings IAML IASA joint congress, music and multimedia, Oslo, Aug 2004. http://www.ismir.net/admin/ismir-booklet.pdf
  17. 17.
    Klapuri A, Davy M (2006) Signal processing methods for music transcription. In: Klapuri A, Davy M (ed) Signal processing. Springer, New York IncGoogle Scholar
  18. 18.
    Alexandraki CH, Bader R (2013) Real-time concatanative synthesis for networked musical interactions. J Acoust Soc Am 133:3367Google Scholar
  19. 19.
    Emmanouil B, Simon D (2013) Multiple-instrument polyphonic music transcription using a temporally constrained shift-invariant model. J Acoust Soc Am 133(3):1727–1741Google Scholar
  20. 20.
    Rohrmeier M, Pearce M (2018) Musical syntax I: theoretical perspectives. In: Bader R (ed) Springer handbook of systematic musicology. Springer, Berlin, Heidelberg, pp 473–486CrossRefGoogle Scholar
  21. 21.
    Pearce M, Rohrmeier M (2018) Musical syntax II: empirical perspectives. In: Bader R (ed) Springer handbook of systematic musicology. Springer, Berlin, Heidelberg, pp 487–505CrossRefGoogle Scholar
  22. 22.
    Rohrmeier MA, Cross I (2014) Linking implicit and statistical learning. Modelling unsupervised online-learning of artificial grammars. Conscious Cognit Int J 27:155–167Google Scholar
  23. 23.
    Zucchini W, MacDonald IL (2009) Hidden-Markov models for time series. An introduction using R, Chapman & HallGoogle Scholar
  24. 24.
    Bader R Computational mechanics of the classical guitar. Springer, Oct 2005Google Scholar
  25. 25.
    Gary S (2018) Delay-lines and digital waveguides. In: Bader R (ed) Springer handbook of systematic musicology. Springer, Berlin, Heidelberg, pp 259–272Google Scholar
  26. 26.
    Fischer J (2017) Numerical simulations of the turbulent flow and the sound field of the Turkish Ney end-blown flute. J Acoust Soc Am 141:39–60CrossRefGoogle Scholar
  27. 27.
    Pfeifle F (2018) Real-time signal processing on field programmable gate array hardware. In: Bader R (ed) Springer handbook of systematic musicology. Springer, Berlin, Heidelberg, pp 385–417CrossRefGoogle Scholar
  28. 28.
    Florian P, Bader, R (2015) Real-time finite-difference method physical modeling of musical instruments using field-programmable gate array hardware. J Audio Eng Soc 63(12):1001–1016Google Scholar
  29. 29.
    Bader R (2014) Microphone array. In: Rossing T (ed) Springer handbook of acoustics, pp 1179–1207Google Scholar
  30. 30.
    Thomas M (2018) Measurement techniques. In: Bader R (ed) Springer handbook of systematic musicology. Springer, Berlin, Heidelberg, pp 81–103Google Scholar
  31. 31.
    George B (2003) Modal analysis of the violin octet. J Acoust Soc Am 113(4):2105–2113Google Scholar
  32. 32.
    Plath N (2013) High-speed camera displacement measurement (HCDM) technique of string vibrations. In: Proceedings of the Stockholm music acoustics conference, pp 188–192Google Scholar
  33. 33.
    Copeland P (2008) Manual of analogue sound restoration techniques. The British Library, LondonGoogle Scholar
  34. 34.
    Elschek O et al (2001) Digitizing world music. Digitalisierung von Weltmusik. Special issue, Systematische Musikwissenschaft/Systematic Musicology, vol VII, no 3Google Scholar
  35. 35.
    Proutskova P (2007) Musical memory of the world data infrastructure in ethnomusicological archives. In: Proceedings of the 8th international conference on music information retrieval (ISMIR), Vienna, AustriaGoogle Scholar
  36. 36.
    The National Recording Preservation Board of the Library of Congress (2010) The state of recorded sound preservation in the United States: a national legacy at risk in the digital age. Washington, D.C. Council on Library and Information Resources and The Library of CongressGoogle Scholar
  37. 37.
    The National Recording Preservation Board of the Library of Congress (2012) The library of congress national recording preservation plan. Washington, D.C. Council on Library and Information Resources and The Library of CongressGoogle Scholar
  38. 38.
    Kolinski M (1978) The structure of music: diversification versus constraint. Ethnomusicology 22(2):229–244CrossRefGoogle Scholar
  39. 39.
    Gmez E, Herrera P, Gmez-Martin F (2013) Compuational ethnomusicology: perspectives and challenges. J New Music Res 42(2):111–112CrossRefGoogle Scholar
  40. 40.
    Pisczcalski M, Geller B (1977) Automatic music transcription. Comput Music J 1(4):24–31Google Scholar
  41. 41.
    Klapuri A (2004) Signal processing methods for the automatic transcription of music. PhD dissertation, Tampere University of TechnologyGoogle Scholar
  42. 42.
    Goto M (2001) An audio-based real-time beat tracking system for music with or without drum-sounds. J New Music Res 30(2):159–171CrossRefGoogle Scholar
  43. 43.
    Klapuri A (1999) Sound onset detection by applying psychoacoustic knowledge. In: 1999 IEEE international conference on acoustics speech and signal processing proceedings, ICASSP99 Cat No99CH36258 6, pp 3089–3092Google Scholar
  44. 44.
    Dessein A, Cont A, Lemaitre G (2010) Real-time polyphonic music transcription with non-negative matrix factorization and beta-divergence. In: Proceedings of the 11th international society for music information retrieval conference (ISMIR), pp 489–494Google Scholar
  45. 45.
    Foote J (2000) Automatic audio segmentation using a measure of audio novelty. In: Proceedings ICME ’00Google Scholar
  46. 46.
    Foote J, Cooper M (2003) Media segmentation using self-similarity decomposition. In: Proceedings of SPIE storage and retrieval for multimedia databases, vol 5021Google Scholar
  47. 47.
    Six J, Cornelis O, Leman M (2013) Tarsos, a modular platform for precise pitch analysis of western and non-western music. J New Music Res 42(2):113–129CrossRefGoogle Scholar
  48. 48.
    Dixon S (2006) Onset detection revisited. In: Proceedings of the international conference on digital audio effects DAFx06, pp 133–137Google Scholar
  49. 49.
    Goto M (2001) A predominant-f0 estimation method for real-world musical audio signals: MAP estimation for incorporating prior knowledge about f0s and tone models. In: Proceedings workshop on consistent and reliable acoustic cues for sound, pp 1–4Google Scholar
  50. 50.
    Bader R (2011) Buddhism, animism, and entertainment in Cambodian melismatic chanting SMOT. In: Schneider A, von Ruschkowski A (eds) Hamburg yearbook of musicology, vol 28Google Scholar
  51. 51.
    Chai W, Vercoe B (2003) Structural analysis of musical signals for indexing and thumbnailing. In: Proceedings ACM/IEEE joint conference on digital librariesGoogle Scholar
  52. 52.
    Gibiat V, Castellengo M (2000) Period doubling occurences in wind instruments musical performance. Acustica 86:746–754Google Scholar
  53. 53.
    Leman M (1995) Music and schema theory. Springer, BerlinCrossRefGoogle Scholar
  54. 54.
    Rabiner LR, Juang BH (1993) Fundamentals of speech recognition, Prentice Hall Signal Processing SeriesGoogle Scholar
  55. 55.
    Aucouturier J-J, Sandler M (2001) Segmentation of musical signals using hidden Markov models. In: Proceedings of the audio engineering society 110th conventionGoogle Scholar
  56. 56.
    Bader R (2018) Springer handbook of systematic musicology. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  57. 57.
    Fletcher N, Rossing THD (2000) Physics of musical instruments. Springer, HeidelbergGoogle Scholar
  58. 58.
    Rossing THD (2010) Science of stringed instruments. Springer, New York, HeidelbergCrossRefGoogle Scholar
  59. 59.
    Rossing Thomas D (2000) Science of percussion instruments. World Scientific, SingaporeCrossRefGoogle Scholar
  60. 60.
    Bader R, Hansen U (2008) Acoustical analysis and modeling of musical instruments using modern signal processing methods. In: Havelock D, Vorlnder M, Kuwano S (eds) Handbook of signal processing in acoustics. Springer, pp 219–247Google Scholar
  61. 61.
    Sadie S (1984) The new grove dictionary of musical instruments, vol 2. Macmillan Press LimitedGoogle Scholar
  62. 62.
    Woodhouse J, Alluzzo PM (2004) The bowed string as we know it today. Acta Acustica United with Acustica 90:579–589Google Scholar
  63. 63.
    Woodhouse J, Schumacher RT (1995) The transient behaviour of models of bowed-string motion. Chaos 5:509–523CrossRefGoogle Scholar
  64. 64.
    Heintze D (2011) Lounúet. Notizen zum neuirländischen Reibidiophon. [Lounúet. Notes about the friction idiophone from New Ireland.]. In: Deterts D, Heintze D, Seybold S (eds) Musik—Ethnologie—Museum. Überseemuesum Bremen, Schünemann, Freundesgabe für Andreas Lüderwaldt. Jahrbuch XVII, pp 69–104Google Scholar
  65. 65.
    Messner F (1998) Friction blocks of New Ireland. In: Kaeppler AL, Love JW (eds) Garland encyclopedia of world music. Australia and the Pacific Islands, vol 9. Routledge, London, pp 380–382Google Scholar
  66. 66.
    Messner GF (1980) Das Reibholz von New Ireland. Manu Taga Kul Kas...’ (Der “Vogel” singt noch...) [The friction wood from New Ireland. Manu Taga Kul Kas...’ (The ‘bird’ still sings...)]. Studien zur Musikwissenschaft, Band 31, pp 221–312Google Scholar
  67. 67.
    Wolf D (2010) Bamarische Musik. Yodaya Lieder im kulturell-historischen Kontext Myanmars [Bama music. Yodaya songs in the cultural-historical context of Myanmar.] regiospectra-Verlag BerlinGoogle Scholar
  68. 68.
    Zaw UK (1981) Burmese culture, general and particular. Sarpay Beikman, Printing and Publishing Corporation, Ministry of Information, RangoonGoogle Scholar
  69. 69.
    Sathej G, Adhikari R (2009) The Eigen spectra of Indian musical drums. J Acoust Soc Am 126(2):831–838CrossRefGoogle Scholar
  70. 70.
    Worland R (2011) Demonstration of coupled membrane modes on a musical drum. J Acoust Soc Am 130:2397CrossRefGoogle Scholar
  71. 71.
    Nickerson LM, Rossing ThD (1999) Acoustics of the Karen bronze drums. J Acoust Soc Am 106:2254CrossRefGoogle Scholar
  72. 72.
    Worland R (2010) Normal modes of a musical drum head under non-uniform tension. J Acoust Soc Am 127(1):525–533CrossRefGoogle Scholar
  73. 73.
    Hwang Y-F, Suzuki H (2016) A finite-element analysis on the free vibration of Japanese drum wood barrels under material property uncertainty. Acoust Sci Tech 37(3):115–122CrossRefGoogle Scholar
  74. 74.
    Bader R (2006) Finite-element calculation of a bass drum. J Acoust Soc Am 119:3290CrossRefGoogle Scholar
  75. 75.
    Suzuki H, Miamoto Y (2012) Resonance frequency changes of Japanese drum (nagado daiko) diaphragms due to temperature, humidity, and aging. Acoust Sci Tech 33(4):277–278CrossRefGoogle Scholar
  76. 76.
    Jeyapalina S (2004) Studies of the hydro-thermal and viscoelastic properties of leather. Univ of Leichester, PhDGoogle Scholar
  77. 77.
    Bilbao S (2012) Time-domain simulation and sound synthesis for the snare drum. J Acoust Soc Am 131(1):914–925CrossRefGoogle Scholar
  78. 78.
    Wriggers P (2001) Nichtlineare finite-element methoden. [Nonlinear Finite-Element Methods], SpringerGoogle Scholar
  79. 79.
    Pierce A (2010) Intrinsic damping, relaxation processes, and internal friction in vibrating systems. POMA 9:1–16Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Systematic Musicology, University of HamburgHamburgGermany

Personalised recommendations