Time Dependent Solutions for the Biot Equations

  • Robert P. GilbertEmail author
  • George C. Hsiao
Part of the Trends in Mathematics book series (TM)


In this paper we show that the Biot model for the ultrasound interrogation of bone rigidity, under certain restrictions, can be shown to lead to a unique solution. More precisely, we consider the classical experimental method for measuring bone parameters, that is where a bone sample in a water bath and the bone sample interrogated with an ultrasound devise. This procedure leads to an inverse problem where the ultrasound signal is measured in various positions in the water tank. In order to solve the inverse problem an accurate forward solver is necessary. It is shown that the forward problem may be formulated in terms of a boundary element method. To this end, the Biot system of equations describing the acoustic interaction with a porous material is written in a convenient, compact form. The system, and the transition conditions between the porous material, are rewritten in a Laplace transformed space. The transformed problem is reformulated as a nonlocal boundary problem. Using a variational approach it is shown that the variational problem is equivalent to a nonlocal problem and the solution is shown to be unique. We then use Lubisch’s approach to find estimates in the time domain without recourse to using the inverse Laplace transformation.


Biot system Porous media Ultrasound interrogation Boundary element method 

MSC (2010)

Codes Primary: 74F10 65M38 Secondary: 74L15 35G46 


  1. 1.
    M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Lower frequency range. J. Acoust. Soc Am. 28(2), 168–178 (1956)CrossRefGoogle Scholar
  2. 2.
    M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 28(2), 179–191 (1956)CrossRefGoogle Scholar
  3. 3.
    J.L. Buchanan, R.P. Gilbert, Determination of the parameters of cancellous bone using high frequency acoustic measurements. Math. Comput. Model. 45, 281–308 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    J.L. Buchanan, R.P. Gilbert, K. Khashanah, Recovery of the poroelastic parameters of cancellous bone using low frequency acoustic interrogation, in Acoustics, Mechanics, and the Related Topics of Mathematical Analysis, ed. by A. Wirgin (World Scientific, Singapore, 2002), pp. 41–47zbMATHGoogle Scholar
  5. 5.
    J.L. Buchanan, R.P. Gilbert, K. Khashanah, Determination of the parameters of cancellous bone using low frequency acoustic measurements. J. Comput. Acoust. 12(2), 99–126 (2004)CrossRefGoogle Scholar
  6. 6.
    S. Chaffai, F. Padilla, G. Berger, P. Languier, In vitro measurement of the frequency dependent attenuation in cancellous bone between 0.2 and 2 MHz. J. Acoust. Soc. Am. 108, 1281–1289 (2000)CrossRefGoogle Scholar
  7. 7.
    Th. Clopeau, J.L. Ferrin, R.P. Gilbert, A. Mikelić, Homogenizing the acoustic properties of the seabed. Math. Comput. Model. 33, 821–841 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
    R.P. Gilbert, A. Mikelic, Homogenizing the acoustic properties of the seabed: part I. Nonlinear Anal. 40, 185–212 (2000)MathSciNetCrossRefGoogle Scholar
  9. 9.
    R. Gilbert, A. Panchenko, Effective acoustic equations for a two-phase medium with microstructure. Math. Comput. Model. 39, 1431–1448 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    R. Hodgskinson, C.F. Njeh, J.D. Currey, C.M. Langton, The ability of ultrasound velocity to predict the stiffness of cancellous bone in vitro. Bone 21, 183–190 (1997)CrossRefGoogle Scholar
  11. 11.
    L. Hörmander, Linear Partial Differential Operators (Springer, Berlin, 1963)Google Scholar
  12. 12.
    A. Hosokawa, T. Otani, Ultrasonic wave propagation in bovine cancellous bone. J. Acoust. Soc. Am. 101, 558–562 (1997)CrossRefGoogle Scholar
  13. 13.
    G.C. Hsiao, W.L. Wendland, Boundary Integral Equations (Springer, Heidelberg, 2008)CrossRefGoogle Scholar
  14. 14.
    G.C. Hsiao, T. S’anchez-Vizuet, F.-J. Sayas, Boundary and coupled boundary-finite element methods for transient wave-structure interaction. IMA J. Numer. Anal. 37, 237–265 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    G.C. Hsiao, F.-J. Sayas, R.J. Weinacht, Time-dependent fluid-structure interaction. Math. Methods Appl. Sci. 40, 486–500 (2017). Article first published online 19 Mar 2015 in Wiley Online Library, (, 2015)Google Scholar
  16. 16.
    G.C. Hsiao, O. Steinbach, W.L. Wendland, Boundary element methods: foundation and error analysis, in Encyclopedia of Computational Mechanics, 2nd edn., ed. by E. Stein et al. (Chichester, Wiley, 2017), pp. 1–62Google Scholar
  17. 17.
    G.C. Hsiao, T. Sánchez-Vizuet, F.-J. Sayas, R.J. Weinacht, A time-dependent fluid-thermoelastic solid interaction. IMA J. Numer. Anal. 1–33 (2018).
  18. 18.
    D.L. Johnson, J. Koplik, R. Dashen, Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid. Mech. 176, 379–402 (1987)CrossRefGoogle Scholar
  19. 19.
    A.R. Laliena, F.-J. Sayas, Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves. Numer. Math. 112, 637–678 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ch. Lubich, On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations. Numer. Math. 67, 365–389 (1994)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ch. Lubich, R. Schneider, Time discretization of parabolic boundary integral equations. Numer. Math. 63(4), 455–481 (1992)MathSciNetCrossRefGoogle Scholar
  22. 22.
    P.M. Morse, H. Feshbach, Methods of Theoretical Physics, Part II (McGraw-Hill Book Company, New York, 1953)zbMATHGoogle Scholar
  23. 23.
    M.L. McKelvie, S.B. Palmer, The interaction of ultrasound with cancellous bone. Phys. Med. Biol. 10, 1331–1340 (1991)CrossRefGoogle Scholar
  24. 24.
    F.-J. Sayas, Retarded Potentials and Time Domain Boundary Integral Equations: A Road-Map. Computational Mathematics, vol. 50 (Springer, Berlin, 2016)CrossRefGoogle Scholar
  25. 25.
    M. Schanz, Dynamic poroelasticity treated by a time domain boundary element method, in IUTAM/ACM/IABEM Symposium on Advanced Mathematical and Computational Mechanics Aspects of the Boundary Element Method, ed. by T. Burczynski (Kluwer Academic Publishers, Dordrecht, 2001), pp. 303–314Google Scholar
  26. 26.
    M. Schanz, Wave Propagation in Viscoelastic and Poroelastic Continua. Lecture Notes in Applied Mechanics, vol. 1 (Springer, Berlin, 2001)CrossRefGoogle Scholar
  27. 27.
    G.B. Whitham, Linear and Nonlinear Waves. Pure and Applied Mathematics (Wiley, New York, 1973)zbMATHGoogle Scholar
  28. 28.
    J.L. Williams, Prediction of some experimental results by Biot’s theory. J. Acoust. Soc. Am. 91, 1106–1112 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Material ScienceRuhr Univerität BochumBochumGermany
  2. 2.Department of Mathematical SciencesUniversity of DelawareNewarkUSA

Personalised recommendations