Advertisement

Deformation of Complex Structures and Boundary Value Problem with Shift

  • G. Akhalaia
  • G. Giorgadze
  • G. Makatsaria
  • N. ManjavidzeEmail author
Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

In this paper we consider so called Beltrami parametrization of Riemann surfaces and show that the Riemann-Hilbert boundary value problem with shift is equivalent to classical Riemann-Hilbert boundary value problem with respect to the complex structures defined by Beltrami parametrization induced from shift operator.

Keywords

Beltrami equation Conformal structure Shift operator Holomorphic bundle Riemann surface 

Mathematics Subject Classification (2010)

Primary 30E25 30G35 Secondary 31A30 

Notes

Acknowledgements

This work was supported by grant N FS 17-96 from the Shota Rustaveli National Science Foundation.

References

  1. 1.
    G. Akhalaia, G. Giorgadze, V. Jikia, N. Kaldani, N. Manjavidze, G. Makatsaria, Elliptic systems on Riemann surfaces. Lecture Notes of TICMI, vol. 13, pp. 1–147. Tbilisi University Press, Tbilisi (2012)Google Scholar
  2. 2.
    A.A. Belavin, V.G. Knizhnik, Complex geometry and the theory of quantum strings. Sov. Phys. JETP 64, 22–43 (1986)MathSciNetzbMATHGoogle Scholar
  3. 3.
    L. Bers, Theory of Pseudo-analytic Functions (Courant Institute, New York, 1953)zbMATHGoogle Scholar
  4. 4.
    B. Bojarski, On a boundary value problem for a system of elliptic equations. Dokl. Akad. Nauk SSSR (N.S.) 102, 201–204 (1955)Google Scholar
  5. 5.
    B. Bojarski, G. Giorgadze, Some analytical and geometric aspects of the stable partial indices, Proceedings of the I.Vekua Institute of Applied Mathematics, vol. 61–62 (2011–2012), pp. 14–32zbMATHGoogle Scholar
  6. 6.
    G. Giorgadze, On monodromy of generalized analytic functions. J. Math. Sci. (N.Y.) 132, 716–738 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    G. Giorgadze, Moduli space of complex structures. J. Math. Sci. (N.Y.) 160, 697–716 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    V. Kravchenko, Applied Pseudoanalytic Function Theory (Birkhauser Verlag, Basel, 2009)CrossRefGoogle Scholar
  9. 9.
    S. Lazzarini, Flat complex vector bundles, the Beltrami differential and W-algebras. Lett. Math. Phys. 41, 207–225 (1997)MathSciNetCrossRefGoogle Scholar
  10. 10.
    G. Litvinchuk, Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift (Springer, New York, 2000)CrossRefGoogle Scholar
  11. 11.
    G. Manjavidze, Boundary-value problems with conjugation for generalized analytic functions, in Proceedings of the I. Vekua Institute of Applied Mathematics (Tbilisi State University, Tbilisi, 1990)Google Scholar
  12. 12.
    G. Manjavidze, N. Manjavidzde, Boundary-value problems for analytic and generalized analytic functions. J. Math. Sci. 160, 745–821 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Pressley, G. Segal, Loop Groups (Clarendon Press, Oxford, 1984)zbMATHGoogle Scholar
  14. 14.
    I.N. Vekua, Generalized Analytic Functions (Nauka, Moscow, 1988)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • G. Akhalaia
    • 1
  • G. Giorgadze
    • 1
  • G. Makatsaria
    • 1
  • N. Manjavidze
    • 2
    Email author
  1. 1.I. Vekua Institute of Applied MathematicsTbilisiGeorgia
  2. 2.Ilia State UniversityTbilisiGeorgia

Personalised recommendations