Advertisement

Metabolomics

  • Peter Natesan Pushparaj
Chapter

Abstract

Metabolomics is a robust and comprehensive investigation of metabolites, generated from the substrates and products of metabolism, within cells, tissues, organisms, and biological fluids. Metabolomics helps to get a panoramic view of an array of metabolites that are implicated in diverse and intricate cellular, molecular, and physiological processes in living systems. More importance has been ascribed to the metabolomics-related research in academia, industry, and government bodies worldwide. It is clearly evident by just two publications in the year 2000 to nearly 27,000 documents till the year 2018 in metabolomics research. Investigating the metabolome is necessary for understanding any subtle changes in metabolites and the subsequent impact on molecular networks or pathways in health and disease states. The rapid emergence of “systems biology” helps to integrate the massive wealth of data derived from these “multi-omics” platforms with metabolomics approach to further interpret or characterize the complex biological processes since the metabolomics is an integral and pivotal part of the central dogma (CD) of molecular biology and characterizes the molecular phenotype. In this chapter, I will discuss the analytical methods in metabolomics such as mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR), coupled or hyphenated techniques with liquid chromatography (LC), gas chromatography (GC) and capillary electrophoresis (LC-MS, GC-MS, CE-NMR, MS-NMR, etc.), experimental pipeline, univariate and multivariate analysis, data visualization strategies, metabolomics databases, pathway analysis servers, and potential applications in health and disease.

Keywords

Metabolomics Central dogma Systems biology Mass spectrometry Nuclear magnetic resonance Liquid chromatography Gas chromatography Hyphenated techniques Health and disease 

Abbreviations

CD

Central Dogma

CE

Capillary Electrophoresis

CP

Chronic Pancreatitis

EI

Electron Impact Ionization

ESI

Electrospray Ionization

GC

Gas Chromatography

KEGG

Kyoto Encyclopedia of Genes and Genomes

LC

Liquid Chromatography

MALDI

Matrix-Assisted Laser Desorption and Ionization

MS

Mass Spectrometry

NMR

Nuclear Magnetic Resonance Spectroscopy

OPLS-DA

Orthogonal Partial Least Squares Discriminant Analysis

PCA

Principal Component Analysis

PDAC

Pancreatic Ductal Adenocarcinoma

QTOF

Quadrupole Time of Flight

TW-IMS

Traveling Wave Ion Mobility Spectrometry

Notes

Acknowledgments

This work is funded by the National Plan for Science, Technology, and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, the Kingdom of Saudi Arabia, award number 12-BIO2267-03. The author also acknowledges with thanks the Science and Technology Unit (STU), King Abdulaziz University, for their excellent technical support.

References

  1. Abdel-Rehim M (2011) Microextraction by packed sorbent (MEPS): a tutorial. Anal Chim Acta 701(2):119–128PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aoki KF, Kanehisa M (2005) Using the KEGG database resource. Curr Protoc Bioinformatics Chapter 1:Unit 1 12Google Scholar
  3. Bartlett MG, Chen B (2016) Editor-in-chief editorial and introduction to ‘Metabolomics and biomarkers’ special issue. Biomed Chromatogr 30(1):5–6PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bingol K, Bruschweiler R (2015a) Two elephants in the room: new hybrid nuclear magnetic resonance and mass spectrometry approaches for metabolomics. Curr Opin Clin Nutr Metab Care 18(5):471–477PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bingol K, Bruschweiler R (2015b) NMR/MS translator for the enhanced simultaneous analysis of metabolomics mixtures by NMR spectroscopy and mass spectrometry: application to human urine. J Proteome Res 14(6):2642–2648PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bingol K, Bruschweiler-Li L, Yu C, Somogyi A, Zhang F, Bruschweiler R (2015a) Metabolomics beyond spectroscopic databases: a combined MS/NMR strategy for the rapid identification of new metabolites in complex mixtures. Anal Chem 87(7):3864–3870PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bingol K, Li DW, Bruschweiler-Li L, Cabrera OA, Megraw T, Zhang F et al (2015b) Unified and isomer-specific NMR metabolomics database for the accurate analysis of (13)C-(1)H HSQC spectra. ACS Chem Biol 10(2):452–459PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bohler A, Wu G, Kutmon M, Pradhana LA, Coort SL, Hanspers K et al (2016) Reactome from a WikiPathways perspective. PLoS Comput Biol 12(5):e1004941PubMedPubMedCentralCrossRefGoogle Scholar
  9. Caspi R, Karp PD (2007) Using the MetaCyc pathway database and the BioCyc database collection. Curr Protoc Bioinformatics Chapter 1:Unit1 17Google Scholar
  10. Caspi R, Foerster H, Fulcher CA, Hopkinson R, Ingraham J, Kaipa P et al (2006) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 34(Database issue):D511–D516PubMedCrossRefGoogle Scholar
  11. Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Latendresse M et al (2008) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 36(Database issue):D623–D631PubMedGoogle Scholar
  12. Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM et al (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 40(Database issue):D742–D753PubMedCrossRefGoogle Scholar
  13. Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA et al (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 42(Database issue):D459–D471PubMedCrossRefGoogle Scholar
  14. Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM et al (2016) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 44(D1):D471–D480PubMedCrossRefGoogle Scholar
  15. Chaleckis R, Murakami I, Takada J, Kondoh H, Yanagida M (2016) Individual variability in human blood metabolites identifies age-related differences. Proc Natl Acad Sci U S A 113(16):4252–4259PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G et al (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46(W1):W486–WW94PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cook KD (2002) ASMS members John Fenn and Koichi Tanaka share Nobel: the world learns our “secret”. American Society for Mass Spectrometry. J Am Soc Mass Spectrom 13(12):1359PubMedCrossRefPubMedCentralGoogle Scholar
  18. Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G et al (2014) The Reactome pathway knowledgebase. Nucleic Acids Res 42(Database issue):D472–D477PubMedCrossRefPubMedCentralGoogle Scholar
  19. Cui Q, Lewis IA, Hegeman AD, Anderson ME, Li J, Schulte CF et al (2008) Metabolite identification via the Madison Metabolomics Consortium Database. Nat Biotechnol 26(2):162–164PubMedCrossRefPubMedCentralGoogle Scholar
  20. Davis VW, Schiller DE, Eurich D, Bathe OF, Sawyer MB (2013) Pancreatic ductal adenocarcinoma is associated with a distinct urinary metabolomic signature. Ann Surg Oncol 20(Suppl 3):S415–S423PubMedCrossRefPubMedCentralGoogle Scholar
  21. Drouin N, Rudaz S, Schappler J (2017) Sample preparation for polar metabolites in bioanalysis. Analyst 143(1):16–20PubMedCrossRefPubMedCentralGoogle Scholar
  22. Ellinger JJ, Chylla RA, Ulrich EL, Markley JL (2013) Databases and software for NMR-based metabolomics. Curr Metabolomics (1):1, 28–40Google Scholar
  23. Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R et al (2016) The Reactome pathway knowledgebase. Nucleic Acids Res 44(D1):D481–D487PubMedCrossRefPubMedCentralGoogle Scholar
  24. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P et al (2018) The Reactome pathway knowledgebase. Nucleic Acids Res 46(D1):D649–DD55PubMedCrossRefPubMedCentralGoogle Scholar
  25. Fan TW, Lane AN, Higashi RM, Farag MA, Gao H, Bousamra M et al (2009) Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Mol Cancer 8:41PubMedPubMedCentralCrossRefGoogle Scholar
  26. Forsberg EM, Huan T, Rinehart D, Benton HP, Warth B, Hilmers B et al (2018) Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS online. Nat Protoc 13(4):633–651PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gil de la Fuente A, Grace Armitage E, Otero A, Barbas C, Godzien J (2017) Differentiating signals to make biological sense – a guide through databases for MS-based non-targeted metabolomics. Electrophoresis 38(18):2242–2256PubMedCrossRefGoogle Scholar
  28. Gowda H, Ivanisevic J, Johnson CH, Kurczy ME, Benton HP, Rinehart D et al (2014) Interactive XCMS online: simplifying advanced metabolomic data processing and subsequent statistical analyses. Anal Chem 86(14):6931–6939PubMedPubMedCentralCrossRefGoogle Scholar
  29. Guijas C, Montenegro-Burke JR, Domingo-Almenara X, Palermo A, Warth B, Hermann G et al (2018) METLIN: a technology platform for identifying knowns and unknowns. Anal Chem 90(5):3156–3164PubMedPubMedCentralCrossRefGoogle Scholar
  30. Haug K, Salek RM, Conesa P, Hastings J, de Matos P, Rijnbeek M et al (2013) MetaboLights–an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res 41(Database issue):D781–D786PubMedCrossRefGoogle Scholar
  31. Heinonen M, Rantanen A, Mielikainen T, Kokkonen J, Kiuru J, Ketola RA et al (2008) FiD: a software for ab initio structural identification of product ions from tandem mass spectrometric data. Rapid Commun Mass Spectrom 22(19):3043–3052PubMedCrossRefGoogle Scholar
  32. Huan T, Forsberg EM, Rinehart D, Johnson CH, Ivanisevic J, Benton HP et al (2017) Systems biology guided by XCMS online metabolomics. Nat Methods 14(5):461–462PubMedPubMedCentralCrossRefGoogle Scholar
  33. Jauhiainen A, Madhu B, Narita M, Narita M, Griffiths J, Tavare S (2014) Normalization of metabolomics data with applications to correlation maps. Bioinformatics 30(15):2155–2161PubMedCrossRefGoogle Scholar
  34. Jeffryes JG, Colastani RL, Elbadawi-Sidhu M, Kind T, Niehaus TD, Broadbelt LJ et al (2015) MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics. J Cheminform 7:44PubMedPubMedCentralCrossRefGoogle Scholar
  35. Johnson SR, Lange BM (2015) Open-access metabolomics databases for natural product research: present capabilities and future potential. Front Bioeng Biotechnol 3:22PubMedPubMedCentralCrossRefGoogle Scholar
  36. Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17(7):451–459PubMedPubMedCentralCrossRefGoogle Scholar
  37. Jones OA, Cheung VL (2007) An introduction to metabolomics and its potential application in veterinary science. Comp Med 57(5):436–442PubMedGoogle Scholar
  38. Kale NS, Haug K, Conesa P, Jayseelan K, Moreno P, Rocca-Serra P et al (2016) MetaboLights: an open-access database repository for metabolomics data. Curr Protoc Bioinformatics 53:14 3 1–8PubMedGoogle Scholar
  39. Kanehisa M (2013) Molecular network analysis of diseases and drugs in KEGG. Methods Mol Biol 939:263–275PubMedCrossRefGoogle Scholar
  40. Kanehisa M (2016) KEGG bioinformatics resource for plant genomics and metabolomics. Methods Mol Biol 1374:55–70PubMedCrossRefGoogle Scholar
  41. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38(Database issue):D355–D360PubMedCrossRefGoogle Scholar
  42. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42(Database issue):D199–D205PubMedCrossRefGoogle Scholar
  43. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1):D353–DD61PubMedCrossRefGoogle Scholar
  44. Karp PD, Caspi R (2011) A survey of metabolic databases emphasizing the MetaCyc family. Arch Toxicol 85(9):1015–1033PubMedPubMedCentralCrossRefGoogle Scholar
  45. Karp PD, Riley M, Paley SM, Pellegrini-Toole A (2002) The MetaCyc database. Nucleic Acids Res 30(1):59–61PubMedPubMedCentralCrossRefGoogle Scholar
  46. Karp PD, Paley S, Altman T (2013) Data mining in the MetaCyc family of pathway databases. Methods Mol Biol 939:183–200PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kelder T, Pico AR, Hanspers K, van Iersel MP, Evelo C, Conklin BR (2009) Mining biological pathways using WikiPathways web services. PLoS One 4(7):e6447PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kelder T, van Iersel MP, Hanspers K, Kutmon M, Conklin BR, Evelo CT et al (2012) WikiPathways: building research communities on biological pathways. Nucleic Acids Res 40(Database issue):D1301–D1307PubMedCrossRefGoogle Scholar
  49. Kessler N, Neuweger H, Bonte A, Langenkamper G, Niehaus K, Nattkemper TW et al (2013) MeltDB 2.0-advances of the metabolomics software system. Bioinformatics 29(19):2452–2459PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kessler N, Bonte A, Albaum SP, Mader P, Messmer M, Goesmann A et al (2015) Learning to classify organic and conventional wheat – a machine learning driven approach using the MeltDB 2.0 metabolomics analysis platform. Front Bioeng Biotechnol 3:35PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kotera M, Hirakawa M, Tokimatsu T, Goto S, Kanehisa M (2012) The KEGG databases and tools facilitating omics analysis: latest developments involving human diseases and pharmaceuticals. Methods Mol Biol 802:19–39PubMedCrossRefGoogle Scholar
  52. Krieger CJ, Zhang P, Mueller LA, Wang A, Paley S, Arnaud M et al (2004) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 32(Database issue):D438–D442PubMedPubMedCentralCrossRefGoogle Scholar
  53. Krummenacker M, Paley S, Mueller L, Yan T, Karp PD (2005) Querying and computing with BioCyc databases. Bioinformatics 21(16):3454–3455PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kutmon M, Riutta A, Nunes N, Hanspers K, Willighagen EL, Bohler A et al (2016) WikiPathways: capturing the full diversity of pathway knowledge. Nucleic Acids Res 44(D1):D488–D494PubMedCrossRefGoogle Scholar
  55. Lane AN, Fan TW, Xie Z, Moseley HN, Higashi RM (2009a) Isotopomer analysis of lipid biosynthesis by high resolution mass spectrometry and NMR. Anal Chim Acta 651(2):201–208PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lane AN, Fan TW, Higashi RM, Tan J, Bousamra M, Miller DM (2009b) Prospects for clinical cancer metabolomics using stable isotope tracers. Exp Mol Pathol 86(3):165–173PubMedPubMedCentralCrossRefGoogle Scholar
  57. Latendresse M, Paley S, Karp PD (2012) Browsing metabolic and regulatory networks with BioCyc. Methods Mol Biol 804:197–216PubMedPubMedCentralCrossRefGoogle Scholar
  58. Lin Y, Schiavo S, Orjala J, Vouros P, Kautz R (2008) Microscale LC-MS-NMR platform applied to the identification of active cyanobacterial metabolites. Anal Chem 80(21):8045–8054PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lindahl A, Saaf S, Lehtio J, Nordstrom A (2017a) Tuning metabolome coverage in reversed phase LC-MS metabolomics of MeOH extracted samples using the reconstitution solvent composition. Anal Chem 89(14):7356–7364PubMedCrossRefGoogle Scholar
  60. Lindahl A, Heuchel R, Forshed J, Lehtio J, Lohr M, Nordstrom A (2017b) Discrimination of pancreatic cancer and pancreatitis by LC-MS metabolomics. Metabolomics 13(5):61PubMedPubMedCentralCrossRefGoogle Scholar
  61. Ma X, Ouyang Z (2016) Ambient ionization and miniature mass spectrometry system for chemical and biological analysis. Trends Anal Chem 85(A):10–19CrossRefGoogle Scholar
  62. Madhu B, Jauhiainen A, McGuire S, Griffiths JR (2017) Exploration of human brain tumour metabolism using pairwise metabolite-metabolite correlation analysis (MMCA) of HR-MAS 1H NMR spectra. PLoS One 12(10):e0185980PubMedPubMedCentralCrossRefGoogle Scholar
  63. Mahieu NG, Genenbacher JL, Patti GJ (2016) A roadmap for the XCMS family of software solutions in metabolomics. Curr Opin Chem Biol 30:87–93PubMedCrossRefGoogle Scholar
  64. Marshall DD, Powers R (2017) Beyond the paradigm: combining mass spectrometry and nuclear magnetic resonance for metabolomics. Prog Nucl Magn Reson Spectrosc 100:1–16PubMedPubMedCentralCrossRefGoogle Scholar
  65. Marshall DD, Lei S, Worley B, Huang Y, Garcia-Garcia A, Franco R et al (2015) Combining DI-ESI-MS and NMR datasets for metabolic profiling. Metabolomics 11(2):391–402PubMedCrossRefGoogle Scholar
  66. Members MSIB, Sansone SA, Fan T, Goodacre R, Griffin JL, Hardy NW et al (2007) The metabolomics standards initiative. Nat Biotechnol 25(8):846–848CrossRefGoogle Scholar
  67. Menikarachchi LC, Cawley S, Hill DW, Hall LM, Hall L, Lai S et al (2012) MolFind: a software package enabling HPLC/MS-based identification of unknown chemical structures. Anal Chem 84(21):9388–9394PubMedPubMedCentralCrossRefGoogle Scholar
  68. Neuweger H, Albaum SP, Dondrup M, Persicke M, Watt T, Niehaus K et al (2008) MeltDB: a software platform for the analysis and integration of metabolomics experiment data. Bioinformatics 24(23):2726–2732PubMedCrossRefGoogle Scholar
  69. Okuda S, Yamada T, Hamajima M, Itoh M, Katayama T, Bork P et al (2008) KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res 36(Web Server issue):W423–W426PubMedPubMedCentralCrossRefGoogle Scholar
  70. Palmer AG, Patel DJ (2002) Kurt Wuthrich and NMR of biological macromolecules. Structure 10(12):1603–1604PubMedCrossRefPubMedCentralGoogle Scholar
  71. Pico AR, Kelder T, van Iersel MP, Hanspers K, Conklin BR, Evelo C (2008) WikiPathways: pathway editing for the people. PLoS Biol 6(7):e184PubMedPubMedCentralCrossRefGoogle Scholar
  72. Robinette SL, Zhang F, Bruschweiler-Li L, Bruschweiler R (2008) Web server based complex mixture analysis by NMR. Anal Chem 80(10):3606–3611PubMedCrossRefPubMedCentralGoogle Scholar
  73. Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, Karp PD (2005) Computational prediction of human metabolic pathways from the complete human genome. Genome Biol 6(1):R2PubMedCrossRefPubMedCentralGoogle Scholar
  74. Salek RM, Haug K, Conesa P, Hastings J, Williams M, Mahendraker T et al (2013a) The MetaboLights repository: curation challenges in metabolomics. Database (Oxford) 2013:bat029CrossRefGoogle Scholar
  75. Salek RM, Haug K, Steinbeck C (2013b) Dissemination of metabolomics results: role of MetaboLights and COSMOS. Gigascience 2(1):8PubMedPubMedCentralCrossRefGoogle Scholar
  76. Salek RM, Neumann S, Schober D, Hummel J, Billiau K, Kopka J et al (2015) COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access. Metabolomics 11(6):1587–1597PubMedPubMedCentralCrossRefGoogle Scholar
  77. Sana TR, Roark JC, Li X, Waddell K, Fischer SM (2008) Molecular formula and METLIN personal metabolite database matching applied to the identification of compounds generated by LC/TOF-MS. J Biomol Tech 19(4):258–266PubMedPubMedCentralGoogle Scholar
  78. Sansone SA, Rocca-Serra P, Field D, Maguire E, Taylor C, Hofmann O et al (2012) Toward interoperable bioscience data. Nat Genet 44(2):121–126PubMedPubMedCentralCrossRefGoogle Scholar
  79. Schnackenberg LK (2006) Metabolomics special focus: an introduction. Pharmacogenomics 7(7):1053–1054PubMedCrossRefGoogle Scholar
  80. Slenter DN, Kutmon M, Hanspers K, Riutta A, Windsor J, Nunes N et al (2018) WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res 46(D1):D661–D6D7PubMedCrossRefPubMedCentralGoogle Scholar
  81. Smelter A, Astra M, Moseley HN (2017) A fast and efficient python library for interfacing with the Biological Magnetic Resonance Data Bank. BMC Bioinformatics 18(1):175PubMedPubMedCentralCrossRefGoogle Scholar
  82. Smith CA, O'Maille G, Want EJ, Qin C, Trauger SA, Brandon TR et al (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27(6):747–751PubMedCrossRefPubMedCentralGoogle Scholar
  83. Steinbeck C, Conesa P, Haug K, Mahendraker T, Williams M, Maguire E et al (2012) MetaboLights: towards a new COSMOS of metabolomics data management. Metabolomics 8(5):757–760PubMedPubMedCentralCrossRefGoogle Scholar
  84. Tan SZ, Begley P, Mullard G, Hollywood KA, Bishop PN (2016) Introduction to metabolomics and its applications in ophthalmology. Eye (Lond) 30(6):773–783CrossRefGoogle Scholar
  85. Tanabe M, Kanehisa M (2012) Using the KEGG database resource. Curr Protoc Bioinformatics Chapter 1:Unit1 12Google Scholar
  86. Tautenhahn R, Cho K, Uritboonthai W, Zhu Z, Patti GJ, Siuzdak G (2012) An accelerated workflow for untargeted metabolomics using the METLIN database. Nat Biotechnol 30(9):826–828PubMedPubMedCentralCrossRefGoogle Scholar
  87. Tsugawa H (2018) Advances in computational metabolomics and databases deepen the understanding of metabolisms. Curr Opin Biotechnol 54:10–17PubMedCrossRefPubMedCentralGoogle Scholar
  88. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J et al (2008) BioMagResBank. Nucleic Acids Res 36(Database issue):D402–D408PubMedPubMedCentralGoogle Scholar
  89. Waagmeester A, Kutmon M, Riutta A, Miller R, Willighagen EL, Evelo CT et al (2016) Using the semantic web for rapid integration of WikiPathways with other biological online data resources. PLoS Comput Biol 12(6):e1004989PubMedPubMedCentralCrossRefGoogle Scholar
  90. Walsh JR, Sen TZ, Dickerson JA (2014) A computational platform to maintain and migrate manual functional annotations for BioCyc databases. BMC Syst Biol 8:115PubMedPubMedCentralCrossRefGoogle Scholar
  91. Wishart DS, Watson MS, Boyko RF, Sykes BD (1997) Automated 1H and 13C chemical shift prediction using the BioMagResBank. J Biomol NMR 10(4):329–336PubMedCrossRefGoogle Scholar
  92. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N et al (2007) HMDB: the human metabolome database. Nucleic Acids Res 35(Database issue):D521–D526PubMedPubMedCentralCrossRefGoogle Scholar
  93. Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B et al (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37(Database issue):D603–D610PubMedCrossRefGoogle Scholar
  94. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y et al (2013) HMDB 3.0–the human metabolome database in 2013. Nucleic Acids Res 41(Database issue):D801–D807PubMedGoogle Scholar
  95. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-Fresno R et al (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46(D1):D608–DD17PubMedCrossRefGoogle Scholar
  96. Worley B, Powers R (2014) MVAPACK: a complete data handling package for NMR metabolomics. ACS Chem Biol 9(5):1138–1144PubMedPubMedCentralCrossRefGoogle Scholar
  97. Xia J, Wishart DS (2011a) Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc 6(6):743–760PubMedCrossRefGoogle Scholar
  98. Xia J, Wishart DS (2011b) Metabolomic data processing, analysis, and interpretation using MetaboAnalyst. Curr Protoc Bioinformatics Chapter 14:Unit 14 0Google Scholar
  99. Xia J, Wishart DS (2016) Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinformatics 55:14 0 1–0 91PubMedCrossRefGoogle Scholar
  100. Xia J, Bjorndahl TC, Tang P, Wishart DS (2008) MetaboMiner–semi-automated identification of metabolites from 2D NMR spectra of complex biofluids. BMC Bioinformatics 9:507PubMedPubMedCentralCrossRefGoogle Scholar
  101. Xia J, Psychogios N, Young N, Wishart DS (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37(Web Server issue):W652–W660PubMedPubMedCentralCrossRefGoogle Scholar
  102. Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS (2012) MetaboAnalyst 2.0–a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40(Web Server issue):W127–W133PubMedPubMedCentralCrossRefGoogle Scholar
  103. Xia J, Sinelnikov IV, Han B, Wishart DS (2015) MetaboAnalyst 3.0–making metabolomics more meaningful. Nucleic Acids Res 43(W1):W251–W257PubMedPubMedCentralCrossRefGoogle Scholar
  104. Zhang F, Bruschweiler-Li L, Robinette SL, Bruschweiler R (2008) Self-consistent metabolic mixture analysis by heteronuclear NMR. Application to a human cancer cell line. Anal Chem 80(19):7549–7553PubMedPubMedCentralCrossRefGoogle Scholar
  105. Zhang F, Robinette SL, Bruschweiler-Li L, Bruschweiler R (2009) Web server suite for complex mixture analysis by covariance NMR. Magn Reson Chem 47(Suppl 1):S118–S122PubMedPubMedCentralCrossRefGoogle Scholar
  106. Zhu ZJ, Schultz AW, Wang J, Johnson CH, Yannone SM, Patti GJ et al (2013) Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat Protoc 8(3):451–460PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Peter Natesan Pushparaj
    • 1
  1. 1.Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical SciencesKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations