Advertisement

Introduction to Bioinformatics

  • Babajan BanaganapalliEmail author
  • Noor Ahmad Shaik
Chapter

Abstract

This chapter offers insights into the interdisciplinary nature of bioinformatics and its contribution and relevance to modern biological research. Modern scientific disciplines like bioinformatics have become highly interdisciplinary. The release of the complete draft of the human genome has virtually revolutionized the shape of modern biological research and has allowed researchers to perceive and interpret complex molecular processes that sustain the life. The discipline of bioinformatics includes adopting diverse range of computational approaches to carry out sequence alignment, structural modeling, biological database design and development, structure prediction, molecular pathway prediction, and in silico gene prediction and mapping. Bioinformatics presently offers excellent highly cohesive data management platforms that work as a seamless interface between wet labs, clinical settings, and state-of-the-art software and database environments.

Keywords

Bioinformatics Data management Structural biology Genomics Proteomics Sequence alignment 

References

  1. Akalin PK (2006) Introduction to bioinformatics. Mol Nutr Food Res 50(7):610–619.  https://doi.org/10.1002/mnfr.200500273CrossRefPubMedGoogle Scholar
  2. Al-Abbasi FA, Mohammed K, Sadath S, Banaganapalli B, Nasser K, Shaik NA (2018) Computational protein phenotype characterization of IL10RA mutations causative to early onset inflammatory bowel disease (IBD). Front Genet 9:146.  https://doi.org/10.3389/fgene.2018.00146CrossRefPubMedPubMedCentralGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410.  https://doi.org/10.1016/S0022-2836(05)80360-2CrossRefGoogle Scholar
  4. Babajan, B., Chaitanya, M., Rajsekhar, C., Gowsia, D., Madhusudhana, P., Naveen, M., . . . Anuradha, C. M. (2011). Comprehensive structural and functional characterization of Mycobacterium tuberculosis UDP-NAG enolpyruvyl transferase (Mtb-MurA) and prediction of its accurate binding affinities with inhibitors. Interdiscip Sci, 3(3), 204–216. doi: https://doi.org/10.1007/s12539-011-0100-yCrossRefPubMedGoogle Scholar
  5. Banaganapalli B, Mohammed K, Khan IA, Al-Aama JY, Elango R, Shaik NA (2016) A computational protein phenotype prediction approach to analyze the deleterious mutations of human MED12 gene. J Cell Biochem 117(9):2023–2035.  https://doi.org/10.1002/jcb.25499CrossRefPubMedGoogle Scholar
  6. Banaganapalli, B., Mulakayala, C., D, G., Mulakayala, N., Pulaganti, M., Shaik, N. A., . . . Chitta, S. K. (2013a). Synthesis and biological activity of new resveratrol derivative and molecular docking: dynamics studies on NFkB. Appl Biochem Biotechnol, 171(7), 1639–1657. doi: https://doi.org/10.1007/s12010-013-0448-zCrossRefPubMedGoogle Scholar
  7. Banaganapalli, B., Mulakayala, C., Pulaganti, M., Mulakayala, N., Anuradha, C. M., Suresh Kumar, C., . . . Gudla, D. (2013b). Experimental and computational studies on newly synthesized resveratrol derivative: a new method for cancer chemoprevention and therapeutics? OMICS, 17(11), 568–583. doi: https://doi.org/10.1089/omi.2013.0014CrossRefPubMedGoogle Scholar
  8. Banaganapalli, B., Rashidi, O., Saadah, O. I., Wang, J., Khan, I. A., Al-Aama, J. Y., . . . Elango, R. (2017). Comprehensive computational analysis of GWAS loci identifies CCR2 as a candidate gene for celiac disease pathogenesis. J Cell Biochem, 118(8), 2193–2207. doi: https://doi.org/10.1002/jcb.25864CrossRefPubMedGoogle Scholar
  9. Batzoglou S, Schwartz R (2014) Computational biology and bioinformatics. Bioinformatics 30(12):i1–i2.  https://doi.org/10.1093/bioinformatics/btu304CrossRefPubMedPubMedCentralGoogle Scholar
  10. Blekherman G, Laubenbacher R, Cortes DF, Mendes P, Torti FM, Akman S et al (2011) Bioinformatics tools for cancer metabolomics. Metabolomics 7(3):329–343.  https://doi.org/10.1007/s11306-010-0270-3CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bodrossy L, Sessitsch A (2004) Oligonucleotide microarrays in microbial diagnostics. Curr Opin Microbiol 7(3):245–254.  https://doi.org/10.1016/j.mib.2004.04.005CrossRefPubMedGoogle Scholar
  12. Bolger ME, Weisshaar B, Scholz U, Stein N, Usadel B, Mayer KF (2014) Plant genome sequencing - applications for crop improvement. Curr Opin Biotechnol 26:31–37.  https://doi.org/10.1016/j.copbio.2013.08.019CrossRefPubMedGoogle Scholar
  13. Bork P (1997) Bioinformatics and molecular medicine--introduction and call for papers. J Mol Med (Berl) 75(1):3–4Google Scholar
  14. Botstein D, Risch N (2003) Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet 33(Suppl):228–237.  https://doi.org/10.1038/ng1090CrossRefPubMedGoogle Scholar
  15. Brown TA (2002) Genomes (Second Edition), Bios Scientific Publishers Ltd, Oxford; ISBN 1-85996-201-7Google Scholar
  16. Brzeski H (2002) An introduction to bioinformatics. Methods Mol Biol 187:193–208.  https://doi.org/10.1385/1-59259-273-2:193CrossRefPubMedGoogle Scholar
  17. Burgess-Herbert SL, Cox A, Tsaih SW, Paigen B (2008) Practical applications of the bioinformatics toolbox for narrowing quantitative trait loci. Genetics 180(4):2227–2235.  https://doi.org/10.1534/genetics.108.090175CrossRefPubMedPubMedCentralGoogle Scholar
  18. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421.  https://doi.org/10.1186/1471-2105-10-421CrossRefPubMedPubMedCentralGoogle Scholar
  19. Can T (2014) Introduction to bioinformatics. Methods Mol Biol 1107:51–71.  https://doi.org/10.1007/978-1-62703-748-8_4CrossRefPubMedGoogle Scholar
  20. Carlson CS, Eberle MA, Rieder MJ, Smith JD, Kruglyak L, Nickerson DA (2003) Additional SNPs and linkage-disequilibrium analyses are necessary for whole-genome association studies in humans. Nat Genet 33(4):518–521.  https://doi.org/10.1038/ng1128CrossRefPubMedGoogle Scholar
  21. Cascorbi I, Henning S, Brockmoller J, Gephart J, Meisel C, Muller JM et al (2000) Substantially reduced risk of cancer of the aerodigestive tract in subjects with variant--463A of the myeloperoxidase gene. Cancer Res 60(3):644–649PubMedGoogle Scholar
  22. Chandramouli K, Qian PY (2009) Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum Genomics Proteomics 2009:1.  https://doi.org/10.4061/2009/239204CrossRefGoogle Scholar
  23. Chen XW, Gao JX (2016) Big Data Bioinformatics. Methods 111:1–2.  https://doi.org/10.1016/j.ymeth.2016.11.017CrossRefPubMedGoogle Scholar
  24. Chicurel M (2002) Genome analysis at your fingertips. Nature 419:751.  https://doi.org/10.1038/419751bCrossRefPubMedGoogle Scholar
  25. Di Tommaso P, Moretti S, Xenarios I, Orobitg M, Montanyola A, Chang JM et al (2011) T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 39(Web Server issue):W13–W17.  https://doi.org/10.1093/nar/gkr245CrossRefPubMedPubMedCentralGoogle Scholar
  26. Eddy SR (2009) A new generation of homology search tools based on probabilistic inference. Genome Inform 23(1):205–211PubMedGoogle Scholar
  27. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797.  https://doi.org/10.1093/nar/gkh340CrossRefPubMedPubMedCentralGoogle Scholar
  28. Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnol J 8(1):2–9.  https://doi.org/10.1111/j.1467-7652.2009.00459.xCrossRefPubMedGoogle Scholar
  29. Erichsen HC, Chanock SJ (2004) SNPs in cancer research and treatment. Br J Cancer 90(4):747–751.  https://doi.org/10.1038/sj.bjc.6601574CrossRefPubMedPubMedCentralGoogle Scholar
  30. Frye SV, Jin J (2016) Novel therapeutics targeting epigenetics: new molecules, new methods. ACS Med Chem Lett 7(2):123.  https://doi.org/10.1021/acsmedchemlett.6b00037CrossRefPubMedPubMedCentralGoogle Scholar
  31. Global Burden of Disease Cancer Collabration, Fitzmaurice C, Akinyemiju TF, Al Lami FH, Alam T, Alizadeh-Navaei R et al (2018) Global, regional, and National Cancer Incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 Cancer groups, 1990 to 2016: a systematic analysis for the global burden of disease study. JAMA Oncol.  https://doi.org/10.1001/jamaoncol.2018.2706
  32. Goldfeder RL, Parker SC, Ajay SS, Ozel Abaan H, Margulies EH (2011) A bioinformatics approach for determining sample identity from different lanes of high-throughput sequencing data. PLoS One 6(8):e23683.  https://doi.org/10.1371/journal.pone.0023683CrossRefPubMedPubMedCentralGoogle Scholar
  33. Greene CS, Tan J, Ung M, Moore JH, Cheng C (2014) Big data bioinformatics. J Cell Physiol 229(12):1896–1900.  https://doi.org/10.1002/jcp.24662CrossRefPubMedPubMedCentralGoogle Scholar
  34. Greene CS, Troyanskaya OG (2011) PILGRM: an interactive data-driven discovery platform for expert biologists. Nucleic Acids Res 39(Web Server issue):W368–W374.  https://doi.org/10.1093/nar/gkr440CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gutmanas A, Oldfield TJ, Patwardhan A, Sen S, Velankar S, Kleywegt GJ (2013) The role of structural bioinformatics resources in the era of integrative structural biology. Acta Crystallogr D Biol Crystallogr 69.(Pt 5:710–721.  https://doi.org/10.1107/S0907444913001157CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hickey G, Blanchette M (2011) A probabilistic model for sequence alignment with context-sensitive indels. J Comput Biol 18(11):1449–1464.  https://doi.org/10.1089/cmb.2011.0157CrossRefPubMedGoogle Scholar
  37. Hinkson IV, Davidsen TM, Klemm JD, Kerlavage AR, Kibbe WA (2017) A comprehensive infrastructure for big data in Cancer research: accelerating Cancer research and precision medicine. Front Cell Dev Biol 5:83.  https://doi.org/10.3389/fcell.2017.00083CrossRefPubMedPubMedCentralGoogle Scholar
  38. Holford ME, McCusker JP, Cheung KH, Krauthammer M (2012) A semantic web framework to integrate cancer omics data with biological knowledge. BMC Bioinformatics 13(Suppl 1):S10.  https://doi.org/10.1186/1471-2105-13-S1-S10CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hou J, Acharya L, Zhu D, Cheng J (2016) An overview of bioinformatics methods for modeling biological pathways in yeast. Brief Funct Genomics 15(2):95–108.  https://doi.org/10.1093/bfgp/elv040CrossRefPubMedGoogle Scholar
  40. Jones J, Otu H, Spentzos D, Kolia S, Inan M, Beecken WD et al (2005) Gene signatures of progression and metastasis in renal cell cancer. Clin Cancer Res 11(16):5730–5739.  https://doi.org/10.1158/1078-0432.CCR-04-2225CrossRefPubMedGoogle Scholar
  41. Jorge NA, Ferreira CG, Passetti F (2012) Bioinformatics of Cancer ncRNA in high throughput sequencing: present state and challenges. Front Genet 3:287.  https://doi.org/10.3389/fgene.2012.00287CrossRefPubMedPubMedCentralGoogle Scholar
  42. Katoh M, Katoh M (2006) Bioinformatics for cancer management in the post-genome era. Technol Cancer Res Treat 5(2):169–175.  https://doi.org/10.1177/153303460600500208CrossRefPubMedGoogle Scholar
  43. Kihara C, Tsunoda T, Tanaka T, Yamana H, Furukawa Y, Ono K et al (2001) Prediction of sensitivity of esophageal tumors to adjuvant chemotherapy by cDNA microarray analysis of gene-expression profiles. Cancer Res 61(17):6474–6479Google Scholar
  44. Kihara D, Yang YD, Hawkins T (2007) Bioinformatics resources for cancer research with an emphasis on gene function and structure prediction tools. Cancer Inform 2:25–35PubMedPubMedCentralGoogle Scholar
  45. Koltes JE, Hu ZL, Fritz E, Reecy JM (2009) BEAP: the BLAST extension and alignment program- a tool for contig construction and analysis of preliminary genome sequence. BMC Res Notes 2:11.  https://doi.org/10.1186/1756-0500-2-11CrossRefPubMedPubMedCentralGoogle Scholar
  46. Konishi H, Ichikawa D, Arita T, Otsuji E (2016) Microarray technology and its applications for detecting plasma microRNA biomarkers in digestive tract cancers. Methods Mol Biol 1368:99–109.  https://doi.org/10.1007/978-1-4939-3136-1_8CrossRefPubMedGoogle Scholar
  47. Laczny C, Leidinger P, Haas J, Ludwig N, Backes C, Gerasch A et al (2012) miRTrail--a comprehensive webserver for analyzing gene and miRNA patterns to enhance the understanding of regulatory mechanisms in diseases. BMC Bioinformatics 13:36.  https://doi.org/10.1186/1471-2105-13-36CrossRefPubMedPubMedCentralGoogle Scholar
  48. Li PC (2016) Overview of microarray technology. Methods Mol Biol 1368:3–4.  https://doi.org/10.1007/978-1-4939-3136-1_1CrossRefPubMedGoogle Scholar
  49. Loy A, Bodrossy L (2006) Highly parallel microbial diagnostics using oligonucleotide microarrays. Clin Chim Acta 363(1–2):106–119.  https://doi.org/10.1016/j.cccn.2005.05.041CrossRefPubMedGoogle Scholar
  50. Macgregor PF, Squire JA (2002) Application of microarrays to the analysis of gene expression in cancer. Clin Chem 48(8):1170–1177PubMedGoogle Scholar
  51. Madden TL, Tatusov RL, Zhang J (1996) Applications of network BLAST server. Methods Enzymol 266:131–141PubMedGoogle Scholar
  52. Mount DW, Pandey R (2005) Using bioinformatics and genome analysis for new therapeutic interventions. Mol Cancer Ther 4(10):1636–1643.  https://doi.org/10.1158/1535-7163.MCT-05-0150CrossRefPubMedGoogle Scholar
  53. Mychaleckyj JC (2007) Genome mapping statistics and bioinformatics. Methods Mol Biol 404:461–488.  https://doi.org/10.1007/978-1-59745-530-5_22CrossRefPubMedGoogle Scholar
  54. Need AC, Motulsky AG, Goldstein DB (2005) Priorities and standards in pharmacogenetic research. Nat Genet 37(7):671–681.  https://doi.org/10.1038/ng1593CrossRefPubMedGoogle Scholar
  55. Neumann RS, Kumar S, Haverkamp TH, Shalchian-Tabrizi K (2014) BLASTGrabber: a bioinformatic tool for visualization, analysis and sequence selection of massive BLAST data. BMC Bioinformatics 15:128.  https://doi.org/10.1186/1471-2105-15-128CrossRefPubMedPubMedCentralGoogle Scholar
  56. Non AL, Thayer ZM (2015) Epigenetics for anthropologists: an introduction to methods. Am J Hum Biol 27(3):295–303.  https://doi.org/10.1002/ajhb.22679CrossRefPubMedGoogle Scholar
  57. Pertsemlidis A, Fondon JW 3rd (2001) Having a BLAST with bioinformatics (and avoiding BLASTphemy). Genome Biol 2(10):REVIEWS2002PubMedPubMedCentralGoogle Scholar
  58. Puhler A (2017) Bioinformatics solutions for big data analysis in life sciences presented by the German network for bioinformatics infrastructure. J Biotechnol 261:1.  https://doi.org/10.1016/j.jbiotec.2017.08.025CrossRefPubMedGoogle Scholar
  59. Samish I, Bourne PE, Najmanovich RJ (2015) Achievements and challenges in structural bioinformatics and computational biophysics. Bioinformatics 31(1):146–150.  https://doi.org/10.1093/bioinformatics/btu769CrossRefPubMedGoogle Scholar
  60. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K et al (2012) Database resources of the National Center for biotechnology information. Nucleic Acids Res 40(Database issue):D13–D25.  https://doi.org/10.1093/nar/gkr1184CrossRefPubMedGoogle Scholar
  61. Schadt EE (2006) Novel integrative genomics strategies to identify genes for complex traits. Anim Genet 37(Suppl 1):18–23.  https://doi.org/10.1111/j.1365-2052.2006.01473.xCrossRefPubMedPubMedCentralGoogle Scholar
  62. Shaik NA, Awan ZA, Verma PK, Elango R, Banaganapalli B (2018) Protein phenotype diagnosis of autosomal dominant calmodulin mutations causing irregular heart rhythms. J Cell Biochem.  https://doi.org/10.1002/jcb.26834
  63. Shaik NA, Kaleemuddin M, Banaganapalli B, Khan F, Shaik NS, Ajabnoor G et al (2014) Structural and functional characterization of pathogenic non- synonymous genetic mutations of human insulin-degrading enzyme by in silico methods. CNS Neurol Disord Drug Targets 13(3):517–532PubMedGoogle Scholar
  64. Soejima H (2009) Epigenetics-related diseases and analytic methods. Rinsho Byori 57(8):769–778PubMedGoogle Scholar
  65. Subramanian S, West RB, Corless CL, Ou W, Rubin BP, Chu KM et al (2004) Gastrointestinal stromal tumors (GISTs) with KIT and PDGFRA mutations have distinct gene expression profiles. Oncogene 23(47):7780–7790.  https://doi.org/10.1038/sj.onc.1208056CrossRefPubMedGoogle Scholar
  66. Taylor JB, Triggle DJ (2007) Comprehensive medicinal chemistry II. Amsterdam; London: ElsevierGoogle Scholar
  67. Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics., Chapter 2, Unit 2.3.  https://doi.org/10.1002/0471250953.bi0203s00
  68. Varon A, Wheeler WC (2012) The tree alignment problem. BMC Bioinformatics 13:293.  https://doi.org/10.1186/1471-2105-13-293CrossRefPubMedPubMedCentralGoogle Scholar
  69. Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC (2016) SIFT missense predictions for genomes. Nat Protoc 11(1):1–9.  https://doi.org/10.1038/nprot.2015.123CrossRefPubMedGoogle Scholar
  70. Waage J, Standl M, Curtin JA, Jessen LE, Thorsen J, Tian C et al (2018) Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis. Nat Genet 50(8):1072–1080.  https://doi.org/10.1038/s41588-018-0157-1CrossRefPubMedGoogle Scholar
  71. Wang F, Kong J, Cooper L, Pan T, Kurc T, Chen W et al (2011) A data model and database for high-resolution pathology analytical image informatics. J Pathol Inform 2:32.  https://doi.org/10.4103/2153-3539.83192CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wang Y, Zhang Y, Huang Q, Li C (2018) Integrated bioinformatics analysis reveals key candidate genes and pathways in breast cancer. Mol Med Rep 17(6):8091–8100.  https://doi.org/10.3892/mmr.2018.8895CrossRefPubMedPubMedCentralGoogle Scholar
  73. Webb B, Sali A (2017) Protein structure modeling with MODELLER. Methods Mol Biol 1654:39–54.  https://doi.org/10.1007/978-1-4939-7231-9_4CrossRefPubMedGoogle Scholar
  74. Wilkinson GR (2005) Drug metabolism and variability among patients in drug response. N Engl J Med 352(21):2211–2221.  https://doi.org/10.1056/NEJMra032424CrossRefPubMedGoogle Scholar
  75. Yalcin D, Hakguder ZM, Otu HH (2016) Bioinformatics approaches to single-cell analysis in developmental biology. Mol Hum Reprod 22(3):182–192.  https://doi.org/10.1093/molehr/gav050CrossRefPubMedGoogle Scholar
  76. Yang MQ, Athey BD, Arabnia HR, Sung AH, Liu Q, Yang JY et al (2009) High-throughput next-generation sequencing technologies foster new cutting-edge computing techniques in bioinformatics. BMC Genomics 10(Suppl 1):I1.  https://doi.org/10.1186/1471-2164-10-S1-I1CrossRefPubMedPubMedCentralGoogle Scholar
  77. Zharikova AA, Mironov AA (2016) piRNAs: biology and bioinformatics. Mol Biol (Mosk) 50(1):80–88.  https://doi.org/10.7868/S0026898416010225CrossRefGoogle Scholar
  78. Zienolddiny S, Skaug V (2012) Single nucleotide polymorphisms as susceptibility, prognostic, and therapeutic markers of nonsmall cell lung cancer. Lung Cancer (Auckl) 3:1–14.  https://doi.org/10.2147/LCTT.S13256CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, Department of Genetic Medicine, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of Genetic Medicine, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations