Role of Mushroom Fungi in Decolourization of Industrial Dyes and Degradation of Agrochemicals

  • Sachin Gupta
  • Sudheer K. Annepu
  • Baby Summuna
  • Moni Gupta
  • Sunil A. Nair
Part of the Fungal Biology book series (FUNGBIO)


Mushroom fungi are well known to possess the ability for degradation of diverse agricultural pollutants. These fungi can degrade extremely diverse range of very persistent toxic environmental pollutants and insoluble chemicals such as lignin. They have the ability to tolerate a wide range of environmental conditions such as temperature, pH and moisture levels and even do not require pre-conditioning to a particular pollutant, because their degradative system is induced by nutrient deprivation. The use of fungi either natural inhabitant or externally introduced to degrade the pollutants involves enzymatic mineralization, chelation, biosorption and precipitation. Fungal biomasses have also shown excellent colour removal capabilities. The various biochemical methods which are used for dye degradation include the fungal degradation methods using pure enzymes or biosorption.


Bioremediation Environmental contamination White rot fungi Lignolytic enzymes Azo dye Biosorption 


  1. Agnihotri NP (1999) Pesticide: safety evaluation and monitoring. All India coordinated Project (AICRP) on Pesticide Residues. Indian Agricultural Research Institute, New Delhi, pp 132–142Google Scholar
  2. Ahlawat OP, Gupta P, Raj D, Vijay B (2006) Dye decolorization potential of spent substrates from Agaricus bisporus and Pleurotus sp.- a laboratory study. Mushroom Res 15:75–82Google Scholar
  3. Akar ST, Gorgulu A, Kaynak Z, Anilan B, Akar T (2009) Biosorption of reactive Blue 49 dye under batch and continuous mode using a mixed biosorbent of macrofungus Agaricus bisporus and Thuja orientalis cones. Chem Eng J 148(1):26–34CrossRefGoogle Scholar
  4. Anastasi A, Parato B, Spina F, Tigini V, Prigione V, Varese GC (2011) Decolourisation and detoxification in the fungal treatment of textile wastewaters from dyeing processes. New Biotechnol 29:38–45CrossRefGoogle Scholar
  5. Arica M, Bayramoglu G (2007) Biosorption of Reactive Red 120 dye from aqueous solution by native and modified fungus biomass preparations of Lentinus sajorcaju. J Hazard Mater 149:499–507PubMedCrossRefGoogle Scholar
  6. Arun A, Prevee Raja P, Arthi R, Ananthi M, Sathish Kumar K, Eyini M (2008) Polycyclic aromatic hydrocarbons (PAHs) biodegradation by basidiomycetes fungi, Pseudomonas isolate and their co cultures: comparative in vivo and silico approach. Appl Biochem Biotechnol 151:132–142PubMedCrossRefGoogle Scholar
  7. Awasthi MK, Pandey AK, Bundela PS, Wong JW, Selvam A (2014) Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Bioresour Technol 168:214–221PubMedCrossRefGoogle Scholar
  8. Ayed L, Mahdhi A, Cheref A, Bakhrouf A (2011) Decolorization and degradation of azo dye Methyl Red by an isolated Sphingomonas paucimobilis: biotoxicity and metabolites characterization. Desalination 274:272–277CrossRefGoogle Scholar
  9. Babu BR, Parande AK, Raghu S, Kumar TP (2007) Cotton textile processing: waste generation and effluent treatment. J Cotton Sci 11:141–153Google Scholar
  10. Baccar R, Blanquez P, Bouzid J, Feki M, Attiya H, Sarra M (2011) Decolorization of a tannery dye: from fungal screening to bioreactor application. Biochem Eng J 56:184–189CrossRefGoogle Scholar
  11. Badawi N, Ronhede S, Olsson S, Kragelund BB, Johnsen AH, Jacobsen OS, Aamand J (2009) Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp. Environ Pollut 57:2806–2812CrossRefGoogle Scholar
  12. Barr D, Aust S (1994) Mechanisms white rot fungi use to degrade pollutants. Environ Sci Technol 28:78–87CrossRefGoogle Scholar
  13. Bending G, Friloux M, Walker A (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with lignolytic potential. FEMS Microbiol Lett 212:59–63PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bhide JV (1996) Microbiological processes for the removal of hexavalent chromium from chromate bearing cooling tower effluent. Biotechnol Lett 18:667–672CrossRefGoogle Scholar
  15. Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67CrossRefGoogle Scholar
  16. Brisley CL (1990) Bioremediation of metal-contaminated surface and ground waters. J Geom 8:204–223Google Scholar
  17. Bumpus J, Tien M, Wright D, Aust S (1985) Oxidation of persistent environmental pollutants by white rot fungi. Science 228:1434–1436PubMedCrossRefPubMedCentralGoogle Scholar
  18. Cano M, Solis M, Solis A, Loera O, HI P, Teutl MMM (2012) Decoloracion de CD2 (cafe directo 2) por enzimas intra-celulares y extra celulares de Trametes versicolor. Interciencia 37:294–298Google Scholar
  19. Casara KP, Vecchiato AB, Lourencetti C, Pinto AA, Dores EF (2012) Environmental dynamics of pesticides in the drainage area of the Sao Lourenco River headwaters, Mato Grosso state, Brazil. J Braz Chem Soc 23:1719–1731CrossRefGoogle Scholar
  20. Chang JS, Law R, Chang CC (1997) Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21. Water Res 31:1651–1658CrossRefGoogle Scholar
  21. Chen H, Hopper SL, Cerniglia CE (2005) Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology 151:1433–1441PubMedPubMedCentralCrossRefGoogle Scholar
  22. Demir G (2004) Degradation of toluene and benzene by Trametes versioclor. J Environ Biol 25(1):19–25PubMedPubMedCentralGoogle Scholar
  23. Dos Santos AB, Cervantes FJ, Van Lier JB (2007) Review paper on current technologies for decolourisation of textile waste-waters: perspectives for anaerobic biotechnology. Bioresour Technol 98:2369–2385PubMedCrossRefPubMedCentralGoogle Scholar
  24. Duran N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28:83–99CrossRefGoogle Scholar
  25. Esposite E, Paulillo SM, Manfio GP (1998) Biodegradation of the herbicide diuron in soil by indigenous actinomycetes. Chemosphere 37:541–548CrossRefGoogle Scholar
  26. Ferris FG, Beveridge TJ (1989) Metal interaction in microbial biofilms in acidic and neutral pH environments. Appl Environ Microbiol 55:1249–1257PubMedPubMedCentralGoogle Scholar
  27. Field JA, De Jong E, Feijoo-Costa G, De Bont JAM (1993) Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends Biotechnol 11:44–48CrossRefGoogle Scholar
  28. Finley SD, Broadbelt LJ, Hatzimanikatis V (2010) In Silico Feasibility of Novel Biodegradation Pathways for 1, 2, 4 - Trichlorobenzene. BMC Syst Biol 4(7):4–14Google Scholar
  29. Frazar C (2000) The bioremediation and phytoremediation of pesticide contaminated sites, national network of environmental studies (NNEMS) fellow, Washington, DCGoogle Scholar
  30. Fu Y, Viraraghavan T (2000) Removal of a dye from an aqueous solution by fungus Aspergillus niger. Water Qual Res J Can 35:95–111Google Scholar
  31. Fu Y, Viraraghavan T (2002) Removal of Congo Red from an aqueous solution by fungus Aspergillus niger. Adv Environ Res 7:239–247CrossRefGoogle Scholar
  32. Gomi N, Yoshida S, Matsumoto K, Okudomi M, Konno H, Hisabori T, Sugano Y (2011) Degradation of the synthetic dye amaranth by the fungus Bjerkandera adusta Dec 1: inference of the degradation pathway from an analysis of decolorized products. Biodegradation 22:1239–1245PubMedCrossRefGoogle Scholar
  33. Hamman S (2004) Bioremediation capabilities of white- rot fungi. Biodegradation 52:1–5Google Scholar
  34. Han M, Choi H, Song H (2004) Degradation of phenanthrene by Trametes versicolor and its laccase. J Microbiol 42:94–98PubMedGoogle Scholar
  35. Hatakka A (2001) Biodegradation of lignin. In: Steinbüchel A (ed) Biopolymers. Vol 1: Hofrichter M., Steinbuchel A. (eds.) Lignin, Humic Substances and Coal. Wiley- VCH, Weinheim, pp 129–180Google Scholar
  36. Hickey W, Fuster D, Lamar R (1994) Transformation of atrazine in soil by Phanerochaete chrysosporium. Soil Biol Biochem 26:1665–1671CrossRefGoogle Scholar
  37. Hitivani N, Mecs L (2003) Effects of certain heavy metals, on the growth, dye decolouration and enzyme activity of Lentinula edodes. Ectoxicol Environ Safety 55(2):199–203CrossRefGoogle Scholar
  38. Jackson M, Houl L, Banerjee H, Sridhar R, Dutta S (1999) Disappearance of 2, 4-dinitrotoulene and 2-amino, 4, 4-dinitrotoulene by Phanerochaete chrysosporium under non-lignolytic conditions. Bull Environ Contam Toxicol 62:390–396PubMedCrossRefPubMedCentralGoogle Scholar
  39. Jin XC, Liu GQ, Xu ZH, Tao WY (2007) Decolorization of a dye industry effluent by Aspergillus fumigatus XC6. Appl Microbiol Biotechnol 74:239–243PubMedCrossRefPubMedCentralGoogle Scholar
  40. Kapoor A, Viraraghavan T (1995) Fungal biosorption- an alternative treatment option for heavy metal bearing waters: a review. Bioresour Technol 53:195–206Google Scholar
  41. Kaushik P, Malik A (2009) Fungal dye decolorization: recent advances and future potential. Environ Int 35:127–141PubMedCrossRefPubMedCentralGoogle Scholar
  42. Kirk TK, Farrell RL (1987) Enzymatic combustion: the microbial degradation of lignin. Ann Rev Microbiol 41:465–505CrossRefGoogle Scholar
  43. Kookana RS, Baskaran S, Naidu R (1998) Pesticide fate and behavior in Australian soils in relation to contamination and management of soil and water: a review. Aust J Soil Res 36:715–764CrossRefGoogle Scholar
  44. Kulshreshtha S, Mathur N, Bhatnagar P (2014) Mushroom as a product and their role in mycoremediation. AMB Express 4:29PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kuo W, Regan R (1998) Aerobic carbamate bioremediation aided by compost residuals from the mushroom industry, laboratory studies. Compost Sci Util 6:19–29CrossRefGoogle Scholar
  46. Lang W, Sirisansaneeyakul S, Ngiwsara L, Mendes S, Martins LO, Okuyama M, Kimura A (2013) Characterization of a new oxygen-insensitive azo reductase from Brevibacillus laterosporus TISTR1911: toward dye decolorization using a packed-bed metal affinity reactor. Bioresour Technol 150:298PubMedCrossRefPubMedCentralGoogle Scholar
  47. Lau KL, Tsang YY, Chiu SW (2003) Use of spent mushroom compost to bioremediate PAH- contaminated samples. Chemosphere 52:1539–1546PubMedCrossRefPubMedCentralGoogle Scholar
  48. Mahapatra DM, Chanakya HN, Ramachandra TV (2014) Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater. Bioresour Technol 168:142–150PubMedCrossRefGoogle Scholar
  49. Majeau JA, Brar SK, Tyagi RD (2010) Laccases for removal of recalcitrant and emerging pollutants. Bioresour Technol 101:2331–2350PubMedCrossRefPubMedCentralGoogle Scholar
  50. Maloney S (2001) Pesticide degradation. In: Gadd G (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, LondonGoogle Scholar
  51. Masaphy S, Henis Y, Levanon D (1996) Manganese enhanced biotransformation of atrazine by the white rot fungus Pleurotus pulmonarius and its correlation with oxidation activity. Appl Environ Microbiol 62:3587–3593PubMedPubMedCentralGoogle Scholar
  52. Mishra A, Malik A (2013) Recent advances in microbial metal bioaccumulation. Crit Rev Environ Sci Technol 43:1162–1222CrossRefGoogle Scholar
  53. Moreno-Garrido I (2008) Microalgae immobilization: current techniques and uses. Bioresour Technol 99:3949–3964PubMedCrossRefPubMedCentralGoogle Scholar
  54. Mousin CP, Ericuad C, Malosse C, Laugero C, Asther M (1996) Biotransformation of the insecticide lindane by the white rot basidiomycetes Phanerochaete chrysosporium. Pestic Sci 47:51–59CrossRefGoogle Scholar
  55. Munari FM, Gaio TA, Calloni R, Dillon AJP (2008) Decolorization of textile dyes by enzymatic extract and submerged cultures of Pleurotus sajor-caju. World J Microbiol Biotechnol 24:1383–1392CrossRefGoogle Scholar
  56. Nawaz K, Hussain K, Choudary N, Majeed A, Ilyas U, Ghani A, Lin F, Ali K, Afghan S, Raza G, Lashari MI (2011) Eco-friendly role of biodegradation against agricultural pesticides hazards. Afr J Microbiol Res 5:177–183Google Scholar
  57. Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33PubMedCrossRefPubMedCentralGoogle Scholar
  58. Pumpel T, Paknikar KM (2001) Bioremediation technologies for metal containing waste waters using metabolically active microorganism. Adv Appl Microbiol 48:135–169PubMedCrossRefPubMedCentralGoogle Scholar
  59. Qu Y, Shi S, Ma F, Yan B (2010) Decolorization of reactive dark blue K-R by the synergism of fungus and bacterium using response surface methodology. Bioresour Technol 101:8016–8023PubMedCrossRefPubMedCentralGoogle Scholar
  60. Reddy C, Mathew Z (2001) Bioremediation potential of white rot fungi. In: Gadd G (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, LondonGoogle Scholar
  61. Renganathan S, Thilagaraj WR, Miranda LR, Gautam P, Velan M (2006) Accumulation of Acid Orange 7 Acid Red 18 and Reactive Black 5 by growing Schizophyllum commune. Bioresour Technol 97:2189–2193PubMedCrossRefPubMedCentralGoogle Scholar
  62. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255PubMedCrossRefPubMedCentralGoogle Scholar
  63. Ron EZ, Royse DJ (1992) Interactions of bacteria with cadmium. Biodegradation 3:161–170CrossRefGoogle Scholar
  64. Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42:138–157CrossRefGoogle Scholar
  65. Saratale RG, Gandhi SS, Purankar MV, Kurade MB, Govindwar SP, Oh SE, Saratale GD (2013) Decolorization and detoxification of sulfonated azo dye C.I. Remazol Red and textile effluent by isolated Lysinibacillus sp. RGS. J Biosci Bioeng 115:658–667PubMedCrossRefPubMedCentralGoogle Scholar
  66. Sasek V, Cajthaml T (2005) Mycoremediation. Current state and perspectives. Int J Med Mushrooms 7:360–361CrossRefGoogle Scholar
  67. Sathiya Moorthi P, Munuswamy D, Sellamuthu PS, Kandasamy M, Thangavelu KP (2007) Biosorption of textile dyes and effluents by Pleurotus florida and Trametes hirsuta with evaluation of their laccase activity. Iran J Biotechnol 5:114–118Google Scholar
  68. Schinner F, Burgstaller W (1989) Extraction of zinc from industrial waste by a Penicillium sp. Appl Environ Microbiol 55:1153–1156PubMedPubMedCentralGoogle Scholar
  69. Sen K, Pakshirajan K, Santra SB (2012) Modelling the biomass growth and enzyme secretion by the white rot fungus. Appl Biochem Biotechnol 167(4):705–713PubMedCrossRefGoogle Scholar
  70. Sharma P, Singh L, Dilbaghi N (2009) Biodegradation of Orange dye by Phanerochaete chrysosporium in simulated wastewater. J Sci Ind Res 68:157–161Google Scholar
  71. Shumate SE, Strandberg GW (1985) Accumulation of metals by microbial cells. In: Moo YM (ed) Comprehensive biotechnology, vol 4. Progamon Press, New YorkGoogle Scholar
  72. Singh H (2006) Mycoremediation: Fungal Bioremediation. John Wiley and Sons Inc., New YorkCrossRefGoogle Scholar
  73. Singh DK (2008) Biodegradation and bioremediation of pesticide in soil: concept, method and recent developments. Indian J Microbiol 48:35–40PubMedPubMedCentralCrossRefGoogle Scholar
  74. Singh M, Singh DK (2014) Biodegradation of endosulfan in broth medium and in soil microcosm by Klebsiella sp. M3. Bull Environ Contam Toxicol 92:237–242PubMedCrossRefGoogle Scholar
  75. Sly LI, Arunpairojana V, Dixon DR (1990) Binding of colloidal MnO2 by extracellular polysaccharides of Pedomicrobium manganicum. Appl Environ Microbiol 56:2791–2794PubMedPubMedCentralGoogle Scholar
  76. Solıs M, Solıs A, Perez HI, Manjarrez N, Flores M (2012) Microbial decolouration of azo dyes: a review. Process Biochem 47:1723–1748CrossRefGoogle Scholar
  77. Strandberg B, Strandberg L, Bergqvist P, Falandysz J, Rappe C (1998) Concentrations and biomagnification of 17 chlordane compounds and other organochlorines in harbor porpoise (Phocoena phocoena) and herring from the southern Baltic Sea. Chemosphere 37:2513–2523PubMedCrossRefPubMedCentralGoogle Scholar
  78. Sturman PJ, Stewart PS, Cunningham AB, Bouwer EJ, Wolfram JH (1995) Engineering scale-up in situ bioremediation processes: a review. J Contam Hydrol 19:171–203CrossRefGoogle Scholar
  79. Tapia-Tussell R, Perez-Brito D, Rojas-Herrera R, Cortes-Velazquez A, Rivera-Muenoz G, Solis-Pereira S (2011) New laccase-producing fungi isolates with biotechnological potential in dye decolorization. Afr J Biotechnol 10:10134–10142CrossRefGoogle Scholar
  80. Tortella G, Durán N, Rubilar O, Parada M, Diez MC (2013) Are white-rot fungi a real biotechnological option for the improvement of environmental health? Crit Rev Biotechnol 15:1350–1365Google Scholar
  81. Trejo-Hernadez M, Lopez- Mungia A, Ramirez R (2001) Residual compost of Agaricus bisporus as a source of crude laccase for enzymatic oxidation of phenolic compounds. Process Biochem 36:635–639CrossRefGoogle Scholar
  82. Tuor U, Winterchalter K, Fietcher A (1995) Enzymes of white rot fungi involved in lignin degradation and ecological determinants for wood decay. J Biotechnol 41:65–74CrossRefGoogle Scholar
  83. Tychanowicz GK, Zilly A, deSouza CGM, Peralta RM (2004) Decolorization of industrial dyes by solid-state cultures of Pleurotus pulmonarius. Process Biochem 39:855e859CrossRefGoogle Scholar
  84. Valli K, Wariish H, Gold M (1992) Degradation of 2, 7-dicholrodibenzo-p-dioxin by the lignin degrading basidiomycetes Phanerochaete chrysosporium. J Bacteriol 174:2131–2137PubMedPubMedCentralCrossRefGoogle Scholar
  85. Verdin AA, Sahraoui LHR, Durand R (2004) Degradation of benzo(a)pyrene by mitosporic fungi and extracellular oxidative enzymes. Int Biodeterior Biodegrad 53:65–70CrossRefGoogle Scholar
  86. Xiao P, Mori T, Kamei I, Kiyota H, Takagi K, Kondo R (2011) Novel metabolic pathways of organochlorine pesticides dieldrin and aldrin by the white rot fungi of the genus Phlebia. Chemosphere 85:218–224PubMedCrossRefPubMedCentralGoogle Scholar
  87. Yadav AK, Kumar N, Sreekrishnan TR, Satya S, Bishnoi NR (2010) Removal of chromium and nickel from aqueous solution in constructed wetland: mass balance, adsorption-desorption and FTIR study. Chem Eng J 160:122–128CrossRefGoogle Scholar
  88. Yang S, Hai FI, Nghiem LD, Price W, Roddick F, Moreira MT, Magram SF (2013) Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: a critical review. Bioresour Technol 141:97–108PubMedCrossRefPubMedCentralGoogle Scholar
  89. Yavad J, Reddy C (1993) Degradation of benzene, toluene, ethylbenzene and xylene (BTEX) by the lignin degradation basidiomycetes Phanerochaete chrysosporium. Appl Environ Microbiol 59:756–762Google Scholar
  90. Yong C, Mcaskie LD, Dean ALR, Chetham AK, Jakeman RJB, Skarnulis AJ (1987) Cadmium accumulation by Citrobacter spp.: the chemical nature of the accumulated metal precipitate and its location in bacterial cells. J Gen Microbiol 133:539Google Scholar
  91. Yousefi V, Kariminia HR (2010) Statistical analysis for enzymatic decolorization of acid orange 7 by Coprinus cinereus peroxidase. Int Biodetr Biodegr 64:245–252CrossRefGoogle Scholar
  92. Zhang J, Chiao C (2002) Novel approaches for remediation of pesticide pollutants. Int J Environ Pollut 18:423–433CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sachin Gupta
    • 1
  • Sudheer K. Annepu
    • 2
  • Baby Summuna
    • 3
  • Moni Gupta
    • 4
  • Sunil A. Nair
    • 5
  1. 1.Division of Plant PathologySher-e-Kashmir University of Agricultural Sciences and Technology of JammuJammuIndia
  2. 2.ICAR-Directorate of Mushroom ResearchSolanIndia
  3. 3.Sher-e-Kashmir University of Agricultural Sciences and Technology of KashmirWadooraIndia
  4. 4.Division of BiochemistrySher-e-Kashmir University of Agricultural Sciences and Technology of JammuJammuIndia
  5. 5.Dr. Y.S. Parmar University of Horticulture and ForestrySolanIndia

Personalised recommendations