Advertisement

Chemical and Bioactive Profiling of Wild Edible Mushrooms

  • Katarzyna Sułkowska-Ziaja
  • Katarzyna Kała
  • Jan Lazur
  • Bożena Muszyńska
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

These days’ edible mushrooms and there in vitro cultures are investigated more often and are used as part of pro-health prophylaxis. In addition to a typical prophylactic use, the multitude of bioactive substances provides them with a curative effect, which is supported by a series of credible tests. The basic nutrients contained in mushrooms and numerous secondary metabolites have a multifaceted, beneficial effect on immune system functioning. This is primarily an antioxidant activity that is reflected in a number of other properties characteristic of this type of material. It is the broadly understood antioxidant activity that makes edible mushrooms a popular element of the diet, with a potential protective effect against civilization diseases.

Keywords

Anticancer activity Indole compounds Medicinal mushrooms Secondary metabolites of mushrooms Phenolic compounds Polysaccharides 

References

  1. Abdala-Valencia H, Berdnikovs S, McCary CA, Urick D, Mahadevia R, Marchese ME, Swartz K, Wright L, Mutlu GM, Cook-Mills JM (2012) Inhibition of allergic inflammation by supplementation with 5-hydroxytryptophan. Am J Physiol Lung Cell Mol Physiol 303:642–660CrossRefGoogle Scholar
  2. Ahmad MS, Ahmad S, Gautam B, Afzal M (2013) Antigenotoxic and anti-clastogenic potential of Agaricus bisporus against MMS induced toxicity in human lymphocyte cultures and in bone marrow cells of mice. Egypt J Med Hum Genet 14:395–402CrossRefGoogle Scholar
  3. Akramiene D, Kondrotas A, Didziapetriene J, Kevelaitis E (2007) Effects of beta-glucans on the immune system. Medicina (Kaunas) 43:597–606CrossRefGoogle Scholar
  4. Asahi T, Wu X, Shimoda H, Hisaka S, Harada E, Kanno T, Nakamura Y, Kato Y, Osawa T (2016) A mushroom-derived amino acid, ergothioneine, is a potential inhibitor of inflammation-related DNA halogenations. Biosci Biotechnol Biochem 80:313–317PubMedCrossRefGoogle Scholar
  5. Ayaz FA, Chuang LT, Torun H, Colak A, Seslin E, Presley J, Smith BR, Glew RH (2011) Fatty acid and amino acid compositions of selected wild-edible mushrooms consumed in Turkey. Int J Food Sci Nutr 62:328–335PubMedCrossRefGoogle Scholar
  6. Barros L, Cruz T, Baptista P, Estevinho LM, Ferreira IC (2008a) Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food Chem Toxicol 46:2742–2747PubMedCrossRefGoogle Scholar
  7. Barros L, Venturini BA, Baptista P, Estevinho LM, Ferreira IC (2008b) Chemical composition and biological properties of portuguese wild mushrooms: a comprehensive study. J Agric Food Chem 56:3856–3862PubMedCrossRefGoogle Scholar
  8. Birdsall TC (1998) 5-Hydroxytryptophan: a clinically-effective serotonin precursor. Sci Rev Alternat Med 3:271–280Google Scholar
  9. Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites – strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22PubMedCrossRefGoogle Scholar
  10. Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11:21–32PubMedCrossRefGoogle Scholar
  11. Byerrum R, Clarke D, Lucas E, Ringler R, Stevens J, Stock CC (1957) Tumor inhibitors in Boletus edulis and other Holobasidiomycetes. Antibiot Chemother 7:1–4Google Scholar
  12. Carrizo ME, Capaldi S, Perduca M, Irazoqui FJ, Nores GA, Monaco HL (2005) The anti-neoplastic lectin of the common edible mushroom (Agaricus bisporus) has two binding sites, each specific for a different configuration at a single epimeric hydroxyl. J Biol Chem 280:10614–10623PubMedCrossRefGoogle Scholar
  13. Chen SY, Ho KJ, Hsieh YJ, Wang LT, Mau JL (2012) Contents of lovastatin, g-aminobutyric acid and ergothioneine in mushroom fruiting bodies and mycelia. LWT - Food Sci Technol 47:274–278CrossRefGoogle Scholar
  14. Cheung PCK (2013) Mini-review on edible mushrooms as source of dietary fiber: preparation and health benefits. Food Sci Human Wellness 2:162–166CrossRefGoogle Scholar
  15. Choi YH (2015) Induction of apoptosis by an ethanol extract of Poria cocos Wolf. in human leukemia U937 cells. Oncol Rep 34:2533–2540PubMedCrossRefGoogle Scholar
  16. Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281:24085–24089PubMedCrossRefGoogle Scholar
  17. Czapski J (2005) Antioxidant activity and phenolic content in some strains of mushrooms (Agaricus bisporus). Veg Crop Res 62:165–173Google Scholar
  18. Dennis EA, Norris PC (2015) Eicosanoid storm in infection and inflammation. Nat Rev Immunol 15:511–523PubMedPubMedCentralCrossRefGoogle Scholar
  19. Dogan H, Coteli E, Karatas F (2016) Determination of glutathione, selenium, and malondialdehyde in different edible mushroom species. Biol Trace Elem Res 174:459–463PubMedCrossRefGoogle Scholar
  20. Drori A, Shabat Y, Ben Ya’acov A, Danay O, Levanon D, Zolotarov L, Ilan Y (2016) Extracts from Lentinula edodes (Shiitake) edible mushrooms enriched with vitamin D exert an anti-inflammatory hepatoprotective effect. J Med Food 19:383–389PubMedCrossRefGoogle Scholar
  21. Echigo R, Shimohata N, Karatsu K, Yanom F, Kayasuga-Kariya Y, Fujisawa A, Ohto T, Kita Y, Nakamura M, Suzuki S, Mochizuki M, Shimizu T, Chung U, Sasaki N (2012) Trehalose treatment suppresses inflammation, oxidative stress, and vasospasm induced by experimental subarachnoid hemorrhage. J Transl Med 10:80PubMedPubMedCentralCrossRefGoogle Scholar
  22. Elmastas M, Isildak O, Turkekul I, Temur N (2007) Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. J Food Compos Anal 20:337–345CrossRefGoogle Scholar
  23. Endo M, Beppu H, Akiyama H, Wakamatsu K, Ito S, Kawamoto Y, Shimpo K, Sumiya T, Koike T, Matsui T (2010) Agaritine purified from Agaricus blazei Murrill exerts anti-tumor activity against leukemic cells. Biochim Biophys Acta 1800:669–673PubMedCrossRefGoogle Scholar
  24. Esposito E, Cuzzocrea S (2010) Anti-inflammatory activity of melatonin in central nervous system. Curr Neuropharmacol 8:228–242PubMedPubMedCentralCrossRefGoogle Scholar
  25. Falandysz J (2008) Selenium in edible mushrooms. J Environ Sci Health C 26:256–299CrossRefGoogle Scholar
  26. Ferreira ICFR, Barros L, Abreu (2009) Antioxidants in wild mushrooms. Curr Med Chem 16:1543–1560PubMedCrossRefGoogle Scholar
  27. Fox EM, Howlett BJ (2008) Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol 11:481–487PubMedCrossRefGoogle Scholar
  28. Fukushima M, Nakano M, Morii Y, Ohashi T, Fujiwara Y, Sonoyama K (2000) Hepatic LDL receptor mRNA in rats is increased by dietary mushroom (Agaricus bisporus) fiber and sugar beet fiber. J Nutr 130:2151–2156PubMedCrossRefGoogle Scholar
  29. Fukuwatari T, Shibata K (2013) Nutritional aspect of tryptophan metabolism. Int J Tryptophan Res 6:3–8PubMedPubMedCentralGoogle Scholar
  30. Gdula-Argasińska J, Czepiel J, Woźniakiewicz A, Wojtoń K, Grzywacz A, Woźniakiewicz M, Jurczyszyn A, Perucki W, Librowski T (2015) N-3 fatty acids as resolvents of inflammation in the A549 cells. Pharmacol Rep 67:610–661PubMedCrossRefGoogle Scholar
  31. Grzywacz A, Gdula Argasińska J, Kała K, Opoka W, Muszyńska B (2016) Anti-inflammatory activity of biomass extracts of the bay mushroom, Imleria badia (Agarico mycetes), in RAW 264.7 cells. Int J Med Mushrooms 18:769–779PubMedCrossRefGoogle Scholar
  32. Grzywacz A, Gdula-Argasińska J, Muszyńska B, Tyszka-Czochara M, Librowski T, Opoka W (2015) Metal responsive transcription factor 1 (MTF-1) regulates zinc dependent cellular processes at the molecular level. Acta Biochim Pol 62:491–498PubMedCrossRefGoogle Scholar
  33. Hong IP, Nam SH, Sung GB, Chung IM, Hur H, Lee MW, Kim MK, Guo SX (2007) Chemical components of Paecilomyces tenuipes (Peck) Samson. Mycobiology 35:215–218PubMedPubMedCentralCrossRefGoogle Scholar
  34. Hong SS, Lee JH, Jeong W, Kim N, Jin HZ, Hwang BY, Lee HJ, Lee SJ, Jang DS, Lee D (2012) Acetylenic acid analogues from the edible mushroom Chanterelle (Cantharellus cibarius) and their effects on the gene expression of peroxisome proliferator-activated receptor-gamma target genes. Bioorg Med Chem Lett 22:2347–2234PubMedCrossRefGoogle Scholar
  35. Hu YD, Zhang BB, Xu GR, Liao XR, Cheung PCK (2016) A mechanistic study on the biosynthetic regulation of bioactive metabolite Antroquinonol from edible and medicinal mushroom Antrodia camphorata. J Funct Foods 25:70–79CrossRefGoogle Scholar
  36. Huang Z, Aaron H, Rose AH, Hoffmann PR (2012) The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 16:705–743PubMedPubMedCentralCrossRefGoogle Scholar
  37. Jani AR, Nag S, Setty SR (2016) Visualization of intracellular Tyrosinase activity in vitro. Bio Protocol 6:e1794CrossRefGoogle Scholar
  38. Jedinak A, Dudhgaonkar S, Wu Q, Simon J, Sliva D (2011) Anti-inflammatory activity of edible oyster mushroom is mediated through the inhibition of NF-κB and AP-1 signaling. Nutr J 10:52–62PubMedPubMedCentralCrossRefGoogle Scholar
  39. Jeong JW, Lee HH, Han MH, Kim GY, Hong SH, Park C, Choi YH (2014) Ethanol extract of Poria cocos reduces the production of inflammatory mediators by suppressing the NF-kappa B signaling pathway in lipopolysaccharide-stimulated RAW 264.7 macrophages. BMC Complement Altern Med 14:101PubMedPubMedCentralCrossRefGoogle Scholar
  40. Jeong SC, Jeong YT, Yang BK, Islam R, Koyyalamudi SR, Pang G, Cho KY, Song CH (2010) White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutr Res 30:49–56PubMedCrossRefGoogle Scholar
  41. Jiang J, Grieb B, Thyagarajan A, Sliva D (2008) Ganoderic acids suppress growth and invasive behavior of breast cancer cells by modulating AP-1 and NF-kappaB signaling. Int J Mol Med 21:577–584PubMedGoogle Scholar
  42. Jiang Q (2014) Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic Biol Med 72:76–90PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kalač P (2010) Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000–2009. Food Chem 122:2–15CrossRefGoogle Scholar
  44. Kampmann M, Hoffrichter AC, Stalinski D, Wichmann R (2015) Kinetic characterization of tyrosinase containing mushroom (Agaricus bisporus) cells immobilized in silica alginate. J Mol Catal B Enzym 116:124–133CrossRefGoogle Scholar
  45. Kosanić M, Ranković B, Rančić A, Stanojković T (2016) Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. J Food Drug Anal 24:477–484PubMedCrossRefGoogle Scholar
  46. Kozarski MS, Klaus AS, Nikšić MP, Van Griensven L, Vrvić MM, Jakovljević DM (2014) Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus. Chem Ind 68:305–320CrossRefGoogle Scholar
  47. Krzyczkowski W, Malinowska E, Suchocki P, Kleps J, Olejnik M, Herold F (2009) Isolation and quantitative determination of ergosterol peroxide in various edible mushroom species. Food Chem 113:351–355CrossRefGoogle Scholar
  48. Labus K, Turek J, Bryjak J (2011) Efficient Agaricus bisporus tyrosinase immobilization on cellulose-based carriers. Biochem Eng J 56:232–240CrossRefGoogle Scholar
  49. Li YR, Liu QH, Wang HX, Ng TB (2008) A novel lectin with potent antitumor, mitogenic and HIV-1 reverse transcriptase inhibitory activities from the edible mushroom Pleurotus citrinopileatus. Biochim Biophys Acta 1780:51–57PubMedCrossRefGoogle Scholar
  50. Lindequist U, Niedermeyer THJ, Jülich WD (2005) The pharmacological potential of mushrooms. J Evid Based Complementary Altern Med 2:285–299CrossRefGoogle Scholar
  51. Ma L, Chen H, Dong P, Lu X (2013) Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus. Food Chem 139:503–508PubMedCrossRefGoogle Scholar
  52. Mantovani MS, Bellini MF, Angeli JPF, Oliveira RJ, Silva AF, Ribeiro LR (2008) β-Glucans in promoting health: prevention against mutation and cancer. Mutat Res 658:154–161PubMedCrossRefGoogle Scholar
  53. Maseko T, Howell K, Dunshea FR, Ng K (2014) Selenium-enriched Agaricus bisporus increases expression and activity of glutathione peroxidase-1 and expression of glutathione peroxidase-2 in rat colon. Food Chem 146:327–333PubMedCrossRefGoogle Scholar
  54. Meimaroglou DM, Galanopoulou D, Markaki P (2009) Study of the effect of methyl jasmonate concentration on aflatoxin B 1 biosynthesis by Aspergillus parasiticus in yeast extract sucrose medium. Int J Microbiol:1–7CrossRefGoogle Scholar
  55. Meng X, Liang H, Luo L (2016) Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohyd Research 424:30–41CrossRefGoogle Scholar
  56. Moon MK, Lee YJ, Kim JS, Kang DG, Lee HS (2009) Effect of Caffeic acid on tumor necrosis factor-alpha-induced vascular inflammation in human umbilical vein endothelial cells. Biol Pharm Bull 32:1371–1377PubMedCrossRefGoogle Scholar
  57. Muszyńska B, Maślanka A, Sułkowska-Ziaja K, Ekiert H (2011a) Analysis of indole compounds in Armillaria mellea fruiting bodies. Acta Pol Pharm 68:93–97PubMedGoogle Scholar
  58. Muszyńska B, Sułkowska-Ziaja K, Ekiert H (2011b) Indole compounds in fruiting bodies of some edible Basidiomycota species. Food Chem 125:1306–1308CrossRefGoogle Scholar
  59. Muszyńska B, Sułkowska-Ziaja K, Ekiert H (2011c) Indole compounds in some culinary – medicinal higher Basidiomycetes from Poland. Int J Med Mushrooms 13:449–454PubMedCrossRefGoogle Scholar
  60. Muszyńska B, Sułkowska-Ziaja K, Ekiert H (2011d) Właściwości lecznicze i dietetyczne wybranych jadalnych grzybów wielkoowocnikowych. Farm Pol 67:551–560Google Scholar
  61. Muszyńska B (2012) Jadalne gatunki grzybów źródłem substancji dietetycznych i leczniczych. Wydawnictwo ZOZ Ośrodka UMEA Shinoda-Kuracejo, Kraków, PolandGoogle Scholar
  62. Muszyńska B, Sułkowska-Ziaja K (2012) Analysis of indole compounds in edible Basidiomycota species after thermal processing. Food Chem 132:455–459PubMedCrossRefGoogle Scholar
  63. Muszyńska B, Sułkowska-Ziaja K, Ekiert H (2013a) Phenolic acids in selected edible Basidiomycota species: Armillaria mellea, Boletus badius, Boletus edulis, Cantharellus cibarius, Lactarius deliciosus and Pleurotus ostreatus. Acta Sci Pol-Hortoru 12:107–116Google Scholar
  64. Muszyńska B, Sułkowska-Ziaja K, Łojewski M, Opoka W, Zając M, Rojowski J (2013b) Edible mushrooms in prophylaxis and treatment of human diseases. Med Rev 101:170–183Google Scholar
  65. Muszyńska B, Sułkowska-Ziaja K, Wójcik A (2013c) Levels of physiological active indole derivatives in the fruiting bodies of some edible mushrooms (Basidiomycota) before and after thermal processing. Mycoscience 54:321–332CrossRefGoogle Scholar
  66. Muszyńska B, Smalec A, Sułkowska-Ziaja K, Opoka W, Reczyński W, Baś B (2015) Culinary-medicinal Agaricus bisporus (white button mushroom) and its in vitro cultures as a source of selected biologically-active elements. J Food Sci Technol 52:7337–7344CrossRefGoogle Scholar
  67. Muszyńska B, Kała K, Firlej A, Sułkowska-Ziaja K (2016a) Cantharellus cibarius – culinary-medicinal mushroom content and biological activity. Acta Pol Pharm 73:589–598PubMedGoogle Scholar
  68. Muszyńska B, Kała K, Sułkowska-Ziaja K, Krakowska A, Opoka W (2016b) Agaricus bisporus and its in-vitro culture as a source of indole compounds released into artificial digestive juices. Food Chem 199:509–515PubMedCrossRefGoogle Scholar
  69. Muszyńska B, Kała K, Rojowski J, Grzywacz A, Opoka W (2017a) Composition and biological properties of Agaricus bisporus fruiting bodies. Pol J Food Nutr Sci 67:1–10Google Scholar
  70. Muszyńska B, Grzywacz-Kisielewska A, Kała K, Gdula-Argasińska J (2017b) Anti-inflammatory properties of edible mushrooms: a review. Food Chem 243:373–381PubMedCrossRefGoogle Scholar
  71. Muszyńska B, Pazdur P, Lazur J, Sułkowska-Ziaja K (2017c) Lentinula edodes (Shiitake) – biological activity. Med Rev 108:189–195Google Scholar
  72. Muta T (2006) Molecular basis for invertebrate innate immune recognition of (1–>3)-beta-D-glucan as a pathogen-associated molecular pattern. Curr Pharm Des 12:4155–4161PubMedCrossRefGoogle Scholar
  73. Nakalembe I, Kabasa JD, Olila D (2015) Comparative nutrient composition of selected wild edible mushrooms from two agro-ecological zones, Uganda. Springerplus 4:433PubMedPubMedCentralCrossRefGoogle Scholar
  74. Ng TB (2004) Peptides and protein from fungi. Peptides 25:1055–1073PubMedCrossRefGoogle Scholar
  75. Novaes MR, Valadares F, Reis MC, Gonçalves DR, Menezes MC (2013) The effects of dietary supplementation with Agaricales mushrooms and other medicinal fungi on breast cancer: evidence-based medicine. Clinics 66:2133–2139CrossRefGoogle Scholar
  76. Novak M, Vetvicka V (2009) Glucans as biological response modifiers. Endocr Metab Immune Disord Drug Targets 9:67–75PubMedCrossRefGoogle Scholar
  77. Opoka W, Kała K, Krężałek R, Sułkowska-Ziaja K, Maślanka A, Muszyńska B (2017) TLC-densitometry analysis of indole compounds in mycelial culture of Imleria badia and Agaricus bisporus enriched with precursors – serine or Anthranilic acid. Acta Chromatogr:1–8Google Scholar
  78. Öztürk M, Duru ME, Kivrak S, Mercan-Doğan N, Türkoglu A, Özler MA (2011) In vitro antioxidant, anticholinesterase and antimicrobial activity studies on three Agaricus species with fatty acid compositions and iron contents: a comparative study on the three most edible mushrooms. Food Chem Toxicol 49:1353–1360PubMedCrossRefGoogle Scholar
  79. Palacios I, Lozano M, Moro C, D’Arrigo M, Rostagno MA, Martinez JA, Garcia-Lafuente A, Guillamon E, Villares A (2011) Antioxidant properties of phenolic compounds occurring in edible mushroom. Food Chem 128:674–678CrossRefGoogle Scholar
  80. Palazón J, Cusidó RM, Bonfill M, Mallol A, Moyano E, Morales C, Piñol MT (2003) Elicitation of different Panax ginseng transformed root phenotypes for an improved ginsenoside production. Plant Physiol Biochem 41:1019–1025CrossRefGoogle Scholar
  81. Patel S, Goyal A (2012) Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech 2(1):1–15PubMedCrossRefGoogle Scholar
  82. Phillips KM, Ruggio DM, Horst RL, Minor B, Simon RR, Feeney MJ, Byrdwell WC, Haytowitz DB (2011) Vitamin D and sterol composition of 10 types of mushrooms from retail suppliers in the United States. J Agric Food Chem 59:7841–7853PubMedCrossRefGoogle Scholar
  83. Prasad AS (2014) Zinc is an antioxidant and anti-inflammatory agent: its role in human health. Front Nutr 1:1–10CrossRefGoogle Scholar
  84. Rajewska J, Bałasińska B (2004) Związki biologicznie aktywne zawarte w grzybach jadalnych i ich korzystny wpływ na zdrowie. Postepy Hig Med Dosw 58:352–357Google Scholar
  85. Rao YK, Fang SH, Tzeng YM (2007) Evaluation of the anti-inflammatory and anti-proliferation tumoral cells activities of Antrodia camphorata, Cordyceps sinensis, and Cinnamomum osmophloeum bark extracts. J Ethnopharmacol 114:78–85PubMedCrossRefGoogle Scholar
  86. Reczyński W, Muszyńska B, Opoka W, Smalec A, Sułkowska-Ziaja K, Malec M (2013) Comparative study of metals accumulation in cultured in vitro mycelium and naturally grown fruiting bodies of Boletus badius and Cantharellus cibarius. Biol Trace Elem Res 153:355–362PubMedPubMedCentralCrossRefGoogle Scholar
  87. Reis FS, Martins A, Barros L, Ferreira IC (2012) Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: a comparative study between in vivo and in vitro samples. Food Chem Toxicol 50:201–207Google Scholar
  88. Reiter RJ, Calvo JR, Karbownik M, Qi W, Tan DX, Ann NY (2000) Melatonin and its relation to the immune system and inflammation. Acad Sci 917:376–386CrossRefGoogle Scholar
  89. Roupas P, Keogh J, Noakes M, Margetts C, Taylor P (2012) The role of edible mushrooms in health: evaluation of the evidence. J Funct Foods 4:687–709CrossRefGoogle Scholar
  90. Ruthes AC, Smiderle FR, Iacomini M (2015) D-Glucans from edible mushrooms: a review on the extraction, purification and chemical characterization approaches. Carbohydr Polymers 117:753–761CrossRefGoogle Scholar
  91. Shao S, Hernandez M, Kramer JKG, Rinker DL, Tsao RTJ (2010) Ergosterol profiles, fatty acid composition, and antioxidant activities of button mushrooms as affected by tissue part and developmental stage. J Agric Food Chem 58:11616–11625PubMedCrossRefGoogle Scholar
  92. Shi YL, Benzie IF, Buswell J (2002) Role of tyrosinase in the genoprotective effect of the edible mushroom Agaricus bisporus. Life Sci 70:1595–1608CrossRefGoogle Scholar
  93. Singdevsachan SK, Auroshree P, Mishra J, Baliyarsingh B, Tayung K, Thatoi H (2016) Mushroom polysaccharides as potential prebiotics with their antitumor and immunomodulating properties: a review. Bioact Carbohydr Diet Fibre 7:1–14CrossRefGoogle Scholar
  94. Singh SS, Wang H, Chan YS, Pan W, Dan X, Yin CM, Akkouh O, Ng TB (2015) Lectins from edible mushrooms Molecules 20:446–469Google Scholar
  95. Siwulski M, Sobieralski K, Sas-Golak I (2014) Wartość odżywcza i prozdrowotna grzybów. Zywn-Nauk Technol Ja 1:16–28Google Scholar
  96. Słomiński A, Semak I, Zjawiony J, Wortsman J, Gandy MN, Li J, Zbytek B, Li W, Tuckey RC (2015) Enzymatic metabolism of ergosterol by cytochrome P450scc (CYP11A1) to biologically active 17α,24-dihydroxyergosterol. Chem Biol 12:931–939CrossRefGoogle Scholar
  97. Smiderle FR, Alquini G, Tadra-Sfeir MZ, Iacomini M, Wichers HJ, Van Griensven LJLD (2013) Agaricus bisporus and Agaricus brasiliensis (1 → 6)-ß-d-glucans show immunostimulatory activity on human THP-1 derived macrophages. Carbohydr Polym 94:91–99PubMedCrossRefGoogle Scholar
  98. Stanikunaite R, Khan SI, Trappe JM, Ross SA (2009) Cyclooxygenase-2 inhibitory and antioxidant compounds from the truffle Elaphomyces granulatus. Phytother Res 23:575–578PubMedCrossRefGoogle Scholar
  99. Stepień M, O’Mahony L, O’Sullivan A, Collier J, Fraser WD, Gibney MJ, Nugent AP, Brennan L (2013) Effect of supplementation with vitamin D2-enhanced mushrooms on vitamin D status in healthy adults. J Nutr 2:e29Google Scholar
  100. Strange RC, Shipman KE, Ramachandran S (2015) Metabolic syndrome: a review of the role of vitamin D in mediating susceptibility and outcome. World J Diabetes 6:896–911PubMedPubMedCentralCrossRefGoogle Scholar
  101. Takei T, Yoshida M, Ohnishi-Kameyama M, Kobori M (2005) Ergosterol peroxide, an apoptosis-inducing component isolated from Sarcodon aspratus (Berk.). Biosci Biotechnol Biochem 69:212–215PubMedCrossRefGoogle Scholar
  102. Tian Y, Zhao Y, Huang J, Zeng H, Zheng B (2016) Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms. Food Chem 197:714–722PubMedCrossRefGoogle Scholar
  103. Turner EH, Loftis JM, Blackwell AD (2006) Serotonin a la carte: supplementation with the serotonin precursor 5-hydroxytryptophan. Pharmacol Ther 109:325–338PubMedCrossRefGoogle Scholar
  104. Varrot A, Basheer SM, Imberty A (2013) Fungal lectins: structure, function and potential applications. Curr Opin Struct Biol 23:678–685PubMedCrossRefGoogle Scholar
  105. Wang H, Ng TB, Ooi VEC (1998) Lectins from mushrooms. Mycol Res 102:897–906CrossRefGoogle Scholar
  106. Wang HX, Liu WK, Ng TB, Ooi VEC, Chang ST (1996) The immunomodulatory and antitumor activities of lectins from the mushroom Tricholoma mongolicum. Immunopharmacology 31:205–211PubMedCrossRefGoogle Scholar
  107. Wang Y, Liu Y, Wang H, Li C, Qi P, Bao J (2012) Agaricus bisporus lectins mediate sislet β cell proliferation through regulation of cell cycle proteins. Exp Biol Med 237:287–296PubMedCrossRefGoogle Scholar
  108. Wannet WJ, Op den Camp HJ, Wisselink HW, van der Drift C, Van Griensven LJ, Vogels GD (1998) Trehalose treatment suppresses inflammation, oxidative stress, and vasospasm induced by experimental subarachnoid hemorrhage. Biochim Biophys Acta 1425:177–188Google Scholar
  109. Wu T, Zivanovic DFA, Sams CE (2004) Chitin and chitosan–value-added products from mushroom waste. J Agric Food Chem 52:7905–7910PubMedCrossRefGoogle Scholar
  110. Yaoita Y, Yoshihara Y, Kakuda R, Machida K, Kikuchi M (2002) New sterols from two edible mushrooms, Pleurotus eryngii and Panellus serotinus. Chem Pharm Bull 50:551–553PubMedCrossRefGoogle Scholar
  111. Yuan JP, Kuang HC, Wang JH, Liu X (2008) Evaluation of ergosterol and its esters in the pileus, gill, and stipe tissues of agaric fungi and their relative changes in the comminuted fungal tissues. Appl Microbiol Biotechnol 80:459–465PubMedCrossRefGoogle Scholar
  112. Zaidi KU, Ali AS, Ali SA (2014) Purification and characterization of melanogenic enzyme tyrosinase from button mushroom. Enzyme Res 2014:1–6CrossRefGoogle Scholar
  113. Zhang GQ, Wang YF, Zhang XQ, Ng TB, Wang HX (2010) Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima. Process Biochem 45:627–633CrossRefGoogle Scholar
  114. Zhang M, Cui SW, Cheung PCK, Wang Q (2007) Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci Technol 18:4–19CrossRefGoogle Scholar
  115. Zong A, Cao H, Wang F (2012) Anticancer polysaccharides from natural resources: a review of recent research. Carbohydr Polym 90:1395–1410PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Katarzyna Sułkowska-Ziaja
    • 1
  • Katarzyna Kała
    • 1
  • Jan Lazur
    • 1
  • Bożena Muszyńska
    • 1
  1. 1.Department of Pharmaceutical Botany, Faculty of PharmacyJagiellonian University Medical CollegeKrakówPoland

Personalised recommendations