Advertisement

Application of Wild Macrofungi as Anticancer Therapeutics

  • Peter Chiew Hing Cheong
  • Chon Seng Tan
  • Shin Yee FungEmail author
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Man consume mushroom because it is delicious. In the East, mushroom as medicine is not uncommon. Following encouraging outcome from clinical trials, several properties from edible and wild mushroom species have been recognised and registered as anticancer therapeutics. The drive to examine existing and wild mushrooms growing in each respective country for anticancer properties sees the compilation of new and unknown medicinal mushrooms research being shared for further assessment. The accumulated evidence of mushrooms possessing an anticancer property is attributed to all the extensive studies on cell lines, animal and human trials, validating the health, safety and quality of life after treatment. The move treads towards finding selective cytotoxicity mushroom properties which would only target cancerous cells and not harm normal healthy cells. The wealth of knowledge we have garnered for the last 20 years on how all macro fungi; be it edible, non-edible, poison or recreation mushrooms conceal in them the properties we could use to suppress the statistics of death and suffering due to cancer. Inevitably, the way forward next is to explore the potential of all wild and less commonly known mushroom resources and push these candidates down the pipeline for the next 20 years of further anticancer research, if not, potentials as food and delicacies.

Keywords

Mushroom Wild Anticancer Selective Safe Unknown 

Abbreviations

AHCC

Active Hexose Correlated Compound

CNL

Clitocybe nebularis lectin

COX2

Cyclooxygenase-2

CR

Complement Receptors

FIP

Fungal Immunomodulatory Protein

GLU

Ganoderma lucidum

IFN

Interferon

IL

Interleukin

NK

Natural Killer

PSK

Polysaccharide Krestin

PSP

Polysaccharopeptide

RNA

Ribonucleic acid

ROS

Reactive Oxygen Species

SPG

Schizophyllan

TCM

Traditional Chinese Medicine

TK

Traditional Knowledge

TMM

Tiger Milk Mushroom

TNF

Tumour Necrosis Factor

References

  1. AHCC (2009) [Internet]. Wolters Kluwer Health. [cited 12.04.2018]. Available from: https://www.drugs.com/npp/ahcc.html
  2. Arata S, Watanabe J, Maeda M, Yamamoto M, Matsuhashi H, Mochizuki M (2016) Continuous intake of the Chaga mushroom (Inonotus obliquus) aqueous extract suppresses cancer progression and maintains body temperature in mice. Heliyon 2(5):e00111PubMedPubMedCentralCrossRefGoogle Scholar
  3. Barbarathiers (2013) What are macrofungi?Google Scholar
  4. Borchers AT, Stern JS, Hackman RM, Keen CL, Gershwin ME (1999) Mushrooms, tumors, and immunity. Proc Soc Exp Biol Med 221(4):281–293PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bovi M, Carrizo ME, Capaldi S, Perduca M, Chiarelli LR, Galliano M (2011) Structure of a lectin with antitumoral properties in king bolete (Boletus edulis) mushrooms. Glycobiology 21(8):1000–1009PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bhardwaj N, Katyal P, Sharma KA (2014) Suppression of inflammatory and allergic responses by pharmacologically potent fungus Ganoderma lucidum. Recent Pat Inflamm Allergy Drug Discov 8(2):104–117CrossRefGoogle Scholar
  7. Cao SM, Simons MJ, Qian CN (2011) The prevalence and prevention of nasopharyngeal carcinoma in China. Chin J Cancer 30(2):114–119PubMedPubMedCentralCrossRefGoogle Scholar
  8. Cassinelli G, Lanzi C, Pensa T, Gambetta RA, Nasini G, Cuccuru G (2000) Clavilactones, a novel class of tyrosine kinase inhibitors of fungal origin. Biochem Pharmacol 59(12):1539–1547PubMedCrossRefPubMedCentralGoogle Scholar
  9. Chen S, Oh S-R, Phung S, Hur G, Ye JJ, Kwok SL, Shrode GE, Belury M, Adams LS, Williams D (2006) Anti-aromatase activity of phytochemicals in white button mushrooms (Agaricus bisporus). Cancer Res 66(24):12026–12034PubMedCrossRefPubMedCentralGoogle Scholar
  10. Chen W, Zhao Z, Li L, Wu B, Chen S-F, Zhou H, Wang Y, Li YQ (2008) Hispolon induces apoptosis in human gastric cancer cells through a ROS-mediated mitochondrial pathway. Free Radic Biol Med 45(1):60–72PubMedCrossRefPubMedCentralGoogle Scholar
  11. Cheng S, Eliaz I, Lin J, Sliva D (2013) Triterpenes from Poria cocos suppress growth and invasiveness of pancreatic cancer cells through the downregulation of MMP-7. Int J Oncol 42(6):1869–1874PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chihara G, Hamuro J, Maeda YY, Arai Y, Fukuoka F (1970) Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from Lentinus edodes (Berk.) Sing. (an edible mushroom). Cancer Res 30(11):2776–2781Google Scholar
  13. Chung CH, Yeh SC, Chen CJ, Lee KT (2014) Coenzyme Q0 from Antrodia cinnamomea in submerged cultures induces reactive oxygen species-mediated apoptosis in A549 human lung cancer cells. Evid Based Complement Alternat Med 2014:10Google Scholar
  14. CNN (2016) The ‘forbidden fruit’ of medicinal mushrooms [press release]Google Scholar
  15. Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L et al (2018) Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359:926–930.  https://doi.org/10.1126/science.aar3247CrossRefPubMedPubMedCentralGoogle Scholar
  16. Coulibaly FS, Youan BBC (2017) Current status of lectin-based cancer diagnosis and therapy. AIMS Mol Sci 4:1–27Google Scholar
  17. Cowawintaweewat S, Manoromana S, Sriplung H, Khuhaprema T, Tongtawe P, Tapchaisri P, Chaicumpa W (2006) Prognostic improvement of patients with advanced liver cancer after active hexose correlated compound (AHCC) treatment. Asian Pac J Allergy Immunol 24(1):33–45PubMedPubMedCentralGoogle Scholar
  18. Cristine da Silva de Souza AC, Correa VG, de Goncalves GA, Soares AA, Bracht A, Peralta RM (2017) Agaricus blazei bioactive compounds and their effects on human health: benefits and controversies. Curr Pharm Des 23(19):2807–2834Google Scholar
  19. Cui J, Chisti Y (2003) Polysaccharopeptides of Coriolus versicolor: physiological activity, uses, and production. Biotechnology advances, 21(2):109–122PubMedCrossRefPubMedCentralGoogle Scholar
  20. Daba A, Ezeronye O (2003) Anti-cancer effect of polysaccharides isolated from higher basidiomycetes mushrooms. Afr J Biotechnol 2(12):672–678CrossRefGoogle Scholar
  21. Dalloul R, Lillehoj H, Lee J, Lee S, Chung K (2006) Immuno potentiating effect of a Fomitella fraxinea-derived lectin on chicken immunity and resistance to coccidiosis. Poult Sci 85(3):446–451PubMedCrossRefPubMedCentralGoogle Scholar
  22. Dias ES, Abe C, Schwan RF (2004) Truths and myths about the mushroom Agaricus blazei. Sci Agric 61(5):545–549CrossRefGoogle Scholar
  23. Didukh MY, Mahajna JA (2005) Screening antitumor activity of low-molecular-weight compounds obtained from the fruit bodies of family Agaricaceae Chevall. (higher basidiomycetes). Int J Med Mushrooms 7(3):398–400CrossRefGoogle Scholar
  24. Endo M, Beppu H, Akiyama H, Wakamatsu K, Ito S, Kawamoto Y et al (2010) Agaritine purified from Agaricus blazei Murrill exerts anti-tumor activity against leukemic cells. Biochim Biophys Acta 1800(7):669–673CrossRefGoogle Scholar
  25. Eroğlu C, Seçme M, Atmaca P, Kaygusuz O, Gezer K, Bağcı G (2016) Extract of Calvatia gigantea inhibits proliferation of A549 human lung cancer cells. Cytotechnology 68(5):2075–2081PubMedPubMedCentralCrossRefGoogle Scholar
  26. Evelyn J, De la Bédoyère G (2004) The diary of John Evelyn. Boydell Press, WoodbridgeGoogle Scholar
  27. Ferreira CFRI, Vaz JA, Vasconcelos MH, Martins A (2010) Compounds from wild mushrooms with antitumor potential. Anti Cancer Agents Med Chem 10(5):424–436CrossRefGoogle Scholar
  28. Friedman M (2016) Mushroom polysaccharides: chemistry and antiobesity, antidiabetes, anticancer, and antibiotic properties in cells, rodents, and humans. Foods 5(4):80PubMedCentralCrossRefGoogle Scholar
  29. Fujimiya Y, Suzuki Y, Oshiman K-i, Kobori H, Moriguchi K, Nakashima H, Matumoto Y, Takahara S, Ebina T, Katakura R (1998) Selective tumoricidal effect of soluble proteoglucan extracted from the basidiomycete, Agaricus blazei Murill, mediated via natural killer cell activation and apoptosis. Cancer Immunol Immunother 46(3):147–159PubMedCrossRefPubMedCentralGoogle Scholar
  30. Gao L, Sun Y, Chen C, Xi Y, Wang J, Wang Z (2007) Primary mechanism of apoptosis induction in a leukemia cell line by fraction FA-2-b-ss prepared from the mushroom Agaricus blazei Murill. Braz J Med Biol Res 40(11):1545–1555PubMedCrossRefPubMedCentralGoogle Scholar
  31. Garibay-Orijel R, Cifuentes J, Estrada-Torres A, Caballero J (2006) People using macro-fungal diversity in Oaxaca, Mexico. Fungal Divers 21:41–67Google Scholar
  32. Geng P, Siu KC, Wang Z, Wu JY (2017) Antifatigue functions and mechanisms of edible and medicinal mushrooms. BioMed Res Int 2017, 9648496.  https://doi.org/10.1155/2017/9648496Google Scholar
  33. Ghoneum M, Wimbley M, Salem F, McKlain A, Attallah N, Gill G (1995) Immunomodulatory and anticancer effects of active hemicellulose compound (AHCC). Int J Immunother 11(1):23–28Google Scholar
  34. Grob CS, Danforth AL, Chopra GS, Hagerty M, McKay CR, Halberstadt AL, Greer GR (2011) Pilot study of psilocybin treatment for anxiety in patients with advanced-stage cancer. Arch Gen Psychiatry 68(1):71–78PubMedCrossRefPubMedCentralGoogle Scholar
  35. Grube BJ, Eng ET, Kao Y-C, Kwon A, Chen S (2001) White button mushroom phytochemicals inhibit aromatase activity and breast cancer cell proliferation. J Nutr 131(12):3288–3293PubMedCrossRefPubMedCentralGoogle Scholar
  36. Guggenheim AG, Wright KM, Zwickey HL (2014) Immune modulation from five major mushrooms: application to integrative oncology. J Integr Med 13(1):32Google Scholar
  37. Guzmán G (2008) Hallucinogenic mushrooms in Mexico: an overview. Econ Bot 62(3):404–412CrossRefGoogle Scholar
  38. Hamuro J, Chihara G (1985) Immunopotentiation by the antitumor polysaccharide lentinan Pharmacology: Springer Boston MA 285–307Google Scholar
  39. Hattori TS, Komatsu N, Shichijo S, Itoh K (2004) Protein-bound polysaccharide K induced apoptosis of the human Burkitt lymphoma cell line, Namalwa. Biomed Pharmacother 58(4):226–230PubMedCrossRefPubMedCentralGoogle Scholar
  40. Health Ncfcai (2016) Complementary, alternative, or integrative health: what’s in a name? https://nccih.nih.gov/health/integrative-health
  41. Hetland G, Johnson E, Lyberg T, Kvalheim G (2011) The mushroom Agaricus blazei Murill elicits medicinal effects on tumor, infection, allergy and inflammation through its modulation of innate immunity and amelioration of Th1/Th2 imbalance and inflammation. Adv Pharmacol Sci 2011:157015PubMedPubMedCentralGoogle Scholar
  42. Hj Che Fauzi S, Y Farida Zuraina M, Mohd Nawi N, Leong L, Nurshahirah N, Florinsiah L, Rajab NF (2013) Antiproliferative effect of Lignosus rhinocerotis, the Tiger Milk mushroom on HCT 116 human colorectal cancer cells. Open Conf Proc J 4:65–70CrossRefGoogle Scholar
  43. Hong SA, Kim K, Nam SJ, Kong G, Kim MK (2008) A case–control study on the dietary intake of mushrooms and breast cancer risk among Korean women. Int J Cancer 122(4):919–923PubMedCrossRefPubMedCentralGoogle Scholar
  44. Hseu Y-C, Tsai T-J, Korivi M, Liu J-Y, Chen H-J, Lin C-M (2017) Antitumor properties of Coenzyme Q(0) against human ovarian carcinoma cells via induction of ROS-mediated apoptosis and cytoprotective autophagy. Sci Rep 7:8062PubMedPubMedCentralCrossRefGoogle Scholar
  45. Huang G-J, Deng J-S, Huang S-S, Hu M-L (2011) Hispolon induces apoptosis and cell cycle arrest of human hepatocellular carcinoma Hep3B cells by modulating ERK phosphorylation. J Agric Food Chem 59(13):7104–7113PubMedCrossRefPubMedCentralGoogle Scholar
  46. Hwang JH, Park SJ, Ko WG, Kang S-M, Lee DB, Bang J et al (2017) Cordycepin induces human lung cancer cell apoptosis by inhibiting nitric oxide mediated ERK/slug signaling pathway. Am J Cancer Res 7(3):417–432PubMedPubMedCentralGoogle Scholar
  47. Ikekawa T (2001) Beneficial effects of edible and medicinal mushrooms on health care. Int J Med Mushrooms 3(4)CrossRefGoogle Scholar
  48. Itoh H, Ito H, Hibasami H (2008) Blazein of a new steroid isolated from Agaricus blazei Murrill (himematsutake) induces cell death and morphological change indicative of apoptotic chromatin condensation in human lung cancer LU99 and stomach cancer KATO III cells. Oncol Rep 20(6):1359–1361PubMedPubMedCentralGoogle Scholar
  49. Ivanova T, Krupodorova T, Barshteyn V, Artamonova A, Shlyakhovenko V (2014) Anticancer substances of mushroom origin. Exp Oncol 36:58–66PubMedPubMedCentralGoogle Scholar
  50. Jiang S, Chen Y, Wang M, Yin Y, Pan Y, Gu B (2012) A novel lectin from Agrocybe aegerita shows high binding selectivity for terminal N-acetylglucosamine. Biochem J 443(2):369–378PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jo WS, Hossain MA, Park SC (2014) Toxicological profiles of poisonous, edible, and medicinal mushrooms. Mycobiology 42(3):215–220PubMedPubMedCentralCrossRefGoogle Scholar
  52. Katoh R, Ooshiro M (2007) Enhancement of antitumor effect of tegafur/uracil (UFT) plus leucovorin by combined treatment with protein-bound polysaccharide, PSK, in mouse models. Cell Mol Immunol 4:295–299PubMedPubMedCentralGoogle Scholar
  53. Kawaguchi Y (2009) Improved survival of patients with gastric cancer or colon cancer when treated with active hexose correlated compound (AHCC): effect of AHCC on digestive system cancer. Nat Med 1(1):1–6Google Scholar
  54. Kim SP, Nam SH, Friedman M (2013) Hericium erinaceus (Lion’s Mane) mushroom extracts inhibit metastasis of cancer cells to the lung in CT-26 colon cancer-tansplanted mice. J Agric Food Chem 61(20):4898–4904PubMedCrossRefPubMedCentralGoogle Scholar
  55. Kim SH, Jakhar R, Kang SC (2015) Apoptotic properties of polysaccharide isolated from fruiting bodies of medicinal mushroom Fomes fomentarius in human lung carcinoma cell line. Saudi J Biol Sci 22(4):484–490PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kimura Y, Kido T, Takaku T, Sumiyoshi M, Baba K (2004) Isolation of an anti-angiogenic substance from Agaricus blazei Murill: its antitumor and antimetastatic actions. Cancer Sci 95(9):758–764PubMedCrossRefPubMedCentralGoogle Scholar
  57. Kinoshita J, Fushida S, Harada S, Makino I, Nakamura K, Oyama K et al (2010) PSK enhances the efficacy of docetaxel in human gastric cancer cells through inhibition of nuclear factor-κB activation and survivin expression. Int J Oncol 36(3):593–600CrossRefGoogle Scholar
  58. Knapton S (2008) Truffles facts. The telegraphGoogle Scholar
  59. Kodama N, Komuta K, Nanba H (2002) Can mistake MD-fraction aid cancer patients. Altern Med Rev 7(3):236–239PubMedPubMedCentralGoogle Scholar
  60. Kodama N, Komuta K, Nanba H (2003) Effect of Maitake (Grifola frondosa) D-fraction on the activation of NK cells in cancer patients. J Med Food 6(4):371–377PubMedCrossRefPubMedCentralGoogle Scholar
  61. Kong BH, Tan NH, Fung SY, Pailoor J (2016) Sub-acute toxicity study of Tiger Milk mushroom Lignosus tigris Chon S. T|an cultivar E sclerotium in Sprague Dawley rats. Front Pharmacol 7:246PubMedPubMedCentralGoogle Scholar
  62. Konno S (2007) Effect of various natural products on growth of bladder cancer cells: two promising mushroom extracts. Altern Med Rev 12(1):63–68PubMedPubMedCentralGoogle Scholar
  63. Kosanić M, Ranković B, Rančić A, Stanojković T (2016) Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. J Food Drug Anal 24(3):477–484CrossRefGoogle Scholar
  64. Kume K, Ikeda M, Miura S, Ito K, Sato KA, Ohmori Y (2016) α-amanitin restrains cancer relapse from drug-tolerant cell subpopulations via TAF15. Sci Rep 6:25895PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lau BF, Abdullah N, Aminudin N, Lee HB, Tan PJ (2015) Ethnomedicinal uses, pharmacological activities, and cultivation of Lignosus spp. (Tiger Milk mushrooms) in Malaysia–a review. J Ethnopharmacol 169:441–458CrossRefGoogle Scholar
  66. Lee TH, Lee CK, Tsou WL, Liu SY, Kuo MT, Wen WC (2007) A new cytotoxic agent from solid-state fermented mycelium of Antrodia camphorata. Planta Med 73(13):1412–1415PubMedCrossRefPubMedCentralGoogle Scholar
  67. Lee SS, Chang YS, Noraswati MNR (2009) Utilization of macrofungi by some indigenous communities for food and medicine in Peninsular Malaysia. For Ecol Manag 257(10):2062–2065CrossRefGoogle Scholar
  68. Lee ML, Tan NH, Fung SY, Tan CS, Ng ST (2012) The Antiproliferative activity of Sclerotia of Lignosus rhinocerus (Tiger Milk mushroom). Evid Based Complement Alternat Med 2012:697603 http://dx.doi.org/10.1155/2012/697603Google Scholar
  69. Lee SS, Tan NH, Pailoor J, Fung SY (2017) Safety evaluation of sclerotium from a medicinal mushroom, Lignosus cameronensis (cultivar): preclinical toxicology studies. Front Pharmacol 8:594PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lemieszek M, Rzeski W (2012) Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class. Contemp Oncol 16(4):285–289Google Scholar
  71. Li Y, Zhang G, Ng TB, Wang H (2010) A novel lectin with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from dried fruiting bodies of the monkey head mushroom Hericium erinaceum. Biomed Res Int 2010Google Scholar
  72. Li G, Yu K, Li F, Xu K, Li J, He S (2014) Anticancer potential of Hericium erinaceus extracts against human gastrointestinal cancers. J Ethnopharmacol 153(2):521–530PubMedCrossRefPubMedCentralGoogle Scholar
  73. Li S, Dong C, Wen HA, Liu X (2016) Development of Ling-zhi industry in China – emanated from the artificial cultivation in the Institute of Microbiology, Chinese Academy of Sciences (IMCAS). Mycology 7(2):74–80PubMedPubMedCentralCrossRefGoogle Scholar
  74. Liu RM, Zhong JJ (2011) Ganoderic acid Mf and S induce mitochondria mediated apoptosis in human cervical carcinoma HeLa cells. Phytomedicine 18(5):349–355PubMedCrossRefPubMedCentralGoogle Scholar
  75. Liu Q, Wang H, Ng TB (2006) First report of a xylose-specific lectin with potent hemagglutinating, antiproliferative and anti-mitogenic activities from a wild ascomycete mushroom. Biochim Biophys Acta 1760(12):1914–1919PubMedCrossRefPubMedCentralGoogle Scholar
  76. Liu K, Wang J, Zhao L, Wang Q (2013) Anticancer, antioxidant and antibiotic activities of mushroom Ramaria flava. Food Chem Toxicol 58:375–380PubMedCrossRefPubMedCentralGoogle Scholar
  77. Lucas E, Ringler R, Byerrum R, Stevens J, Clarke DA, Stock CC (1957) Tumor inhibitors in Boletus edulis and other Holobasidiomycetes. Antibiot Chemother 7(1)Google Scholar
  78. Luk S-U, Lee TK-W, Liu J, Lee DT-W, Chiu Y-T, Ma S (2011) Chemopreventive effect of PSP through targeting of prostate cancer stem cell-like population. PLoS One 6(5):e19804PubMedPubMedCentralCrossRefGoogle Scholar
  79. Luo H, Hong S-Y, Sgambelluri RM, Angelos E, Li X, Walton Jonathan D (2014) Peptide macrocyclization catalyzed by a prolyl oligopeptidase involved in α-amanitin biosynthesis. Chem Biol 21(12):1610–1617PubMedPubMedCentralCrossRefGoogle Scholar
  80. Markova, N., Kussovski, V., Drandarska, I., Nikolaeva, S., Georgieva, N., and Radoucheva, T. (2003). Protective activity of Lentinan in experimental tuberculosis. Int Immunopharma, 3(10-11), 1557–1562.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Martin KR, Brophy SK (2010) Commonly consumed and specialty dietary mushrooms reduce cellular proliferation in MCF-7 human breast cancer cells. Exp Bio Med 235(11):1306–1314CrossRefGoogle Scholar
  82. McCloskey S, Noppawan S, Mongkolthanaruk W, Suwannasai N, Senawong T, Prawat U (2017) A new cerebroside and the cytotoxic constituents isolated from Xylaria allantoidea SWUF76. Nat Prod Res 31(12):1422–1430PubMedCrossRefPubMedCentralGoogle Scholar
  83. Mizuno T, Ohsawa K, Hagiwara N, Kuboyama R (1986) Fractionation and characterization of antitumor polysaccharides from Maitake, Grifola frondosa. Agric Biol Chem 50(7):1679–1688Google Scholar
  84. Mizuno M, Morimoto M, Minato K-I, Tsuchida H (1998) Polysaccharides from Agaricus blazei stimulates lymphocyte T-cell subsets in mice. Biosci Biotechnol Biochem 62(3):434–437PubMedCrossRefPubMedCentralGoogle Scholar
  85. Mizuno M, Minato KI, Ito H, Kawade M, Terai H, Tsuchida H (1999) Anti-tumor polysaccharide from the mycelium of liquid-cultured Agaricus blazei mill. IUBMB Life 47(4):707–714CrossRefGoogle Scholar
  86. Moldenhauer G, Salnikov AV, Lüttgau S, Herr I, Anderl J, Faulstich H (2012) Therapeutic potential of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic carcinoma. J Nat Cancer Inst 104(8):622–634PubMedCrossRefPubMedCentralGoogle Scholar
  87. Mondal A, Banerjee D, Majumder R, Maity TK, Khowala S (2016) Evaluation of in vitro antioxidant, anticancer and in vivo antitumour activity of Termitomyces clypeatus MTCC 5091. Pharm Biol 54(11):2536–2546PubMedCrossRefPubMedCentralGoogle Scholar
  88. Montoya A, Hernández-Totomoch O, Estrada-Torres A, Kong A, Caballero J (2003) Traditional knowledge about mushrooms in a Nahua community in the state of Tlaxcala, México. Mycologia 95(5):793–806PubMedPubMedCentralGoogle Scholar
  89. Mueller GM, Schmit JP, Leacock PR, Buyck B, Cifuentes J, Desjardin DE, Halling RE, Hjortstam K, Iturriaga T, Larsson KH, Lodge DJ, May TW, Minter D, Rajchenberg M, Redhead SA (2007) Global diversity and distribution of macrofungi. Biodivers Conserv 16(1):37–48CrossRefGoogle Scholar
  90. Nakamura N, Hirakawa A, Gao JJ, Kakuda H, Shiro M, Komatsu Y (2004) Five new maleic and succinic acid derivatives from the mycelium of Antrodia camphorata and their cytotoxic effects on LLC tumor cell line. J Nat Prod 67(1):46–48PubMedCrossRefPubMedCentralGoogle Scholar
  91. Nakamura K, Shinozuka K, Yoshikawa N (2015) Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis. J Pharmacol Sci 127(1):53–56PubMedCrossRefPubMedCentralGoogle Scholar
  92. Ng ML, Yap AT (2002) Inhibition of human colon carcinoma development by lentinan from shiitake mushrooms (Lentinus edodes). J Altern Complement Med 8(5):581–589PubMedCrossRefPubMedCentralGoogle Scholar
  93. Nguyen VT, Giannoni F, Dubois MF, Seo SJ, Vigneron M, Kédinger C, Bensaude O (1996) In vivo degradation of RNA polymerase II largest subunit triggered by alpha-amanitin. Nucleic Acids Res 24(15):2924–2929PubMedPubMedCentralCrossRefGoogle Scholar
  94. Ng TB (1998) A review of research on the protein-bound polysaccharide (polysaccharopeptide, PSP) from the mushroom Coriolus versicolor (Basidiomycetes: Polyporaceae). Gen Pharmacol Vasc S 30(1):1–4PubMedCrossRefPubMedCentralGoogle Scholar
  95. Nie S, Cui SW, Xie M (2017) Bioactive polysaccharides. Elsevier Science.  https://doi.org/10.1016/C2015-0-04574-9. ISBN.978-0-12-809418-1
  96. Ooi CVE, Liu F (2000) Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr Med Chem 7(7):715–729PubMedCrossRefPubMedCentralGoogle Scholar
  97. Owaid Mustafa N, Barish A, Ali Shariati M (2017) Cultivation of Agaricus bisporus (button mushroom) and its usages in the biosynthesis of nanoparticles. Open Agric 2:537–543Google Scholar
  98. Patel S, Goyal A (2012) Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech 2(1):1–15CrossRefGoogle Scholar
  99. Paterson RRM (2006) Ganoderma – a therapeutic fungal biofactory. Phytochemistry 67(18):1985–2001PubMedPubMedCentralCrossRefGoogle Scholar
  100. Peng CC, Chen KC, Peng RY, Chyau CC, Su CH, Hsieh-Li HM (2007) Antrodia camphorata extract induces replicative senescence in superficial TCC, and inhibits the absolute migration capability in invasive bladder carcinoma cells. J Ethnopharmacol 109(1):93–103PubMedCrossRefPubMedCentralGoogle Scholar
  101. Pleszczyńska M, Wiater A, Siwulski M, Lemieszek MK, Kunaszewska J, Kaczor J (2016) Cultivation and utility of Piptoporus betulinus fruiting bodies as a source of anticancer agents. World J Microbiol Biotechnol 32(9):151PubMedPubMedCentralCrossRefGoogle Scholar
  102. Pohleven J, Obermajer N, Sabotič J, Anžlovar S, Sepčić K, Kos J, Kralj B, Strukelj B, Brzin J (2009) Purification, characterization and cloning of a ricin B-like lectin from mushroom Clitocybe nebularis with antiproliferative activity against human leukemic T cells. Biochim Biophys Acta 1790(3):173–181PubMedCrossRefGoogle Scholar
  103. Poucheret P, Fons F, Rapior S (2006) Biological and pharmacological activity of higher fungi: 20-year retrospective analysis. Cryptogam Mycol 27(4):311–333Google Scholar
  104. Pushparajah V, Fatima A, Chong CH, Gambule TZ, Chan CJ, Ng ST, Tan CS, Fung SY, Lee SS, Tan NH, Lim RLH (2016) Characterisation of a new fungal immunomodulatory protein from Tiger Milk mushroom, Lignosus rhinocerotis. Sci Rep 6:30010PubMedPubMedCentralCrossRefGoogle Scholar
  105. Ramberg JE, Nelson ED, Sinnott RA (2010) Immunomodulatory dietary polysaccharides: a systematic review of the literature. Nut J 9(1):54Google Scholar
  106. Rathore H, Prasad S, Sharma S (2017) Mushroom nutraceuticals for improved nutrition and better human health: a review. Pharma Nutr 5(2):35–46Google Scholar
  107. Reddy SM (2015) Diversity and applications of mushrooms. In: Bahadur B, Venkat Rajam M, Sahijram L, Krishnamurthy K (eds) Plant biology and biotechnology. Springer, New Delhi ISBN. 978-81-322-2285-9, pp 231–261CrossRefGoogle Scholar
  108. Reis FS, Martins A, Vasconcelos MH, Morales P, Ferreira ICFR (2017) Functional foods based on extracts or compounds derived from mushrooms. Trends Food Sci Technol 66:48–62CrossRefGoogle Scholar
  109. Riede I (2010) Tumor therapy with Amanita phalloides (death cap): stabilization of B-cell chronic lymphatic leukemia. J Altern Complement Med 16(10):1129–1132PubMedCrossRefPubMedCentralGoogle Scholar
  110. Riede I (2012) Tumor therapy with Amanita phalloides (Death cap): long term stabilization of prostate-cancers. J Integr Oncol 1:101CrossRefGoogle Scholar
  111. Riede I (2013) Switch the tumor off: from genes to Amanita therapy. Am J Biomed Res 1:93–107CrossRefGoogle Scholar
  112. Riede I (2017) New therapy strategy for prostate cancer: Amanita phalloides treatment stabilizes best without pre-treatments (observational study pre-protocol). Br J Med Med Res 21:1–7CrossRefGoogle Scholar
  113. Roland JF, Chmielewicz ZF, Weiner BA, Gross AM, Boening OP, Luck JV, Bardos TJ, Reilly HC, Sugiura K, Stock CC, Lucas EH, Byerrum RU, Stevens JA (1960) Calvacin: a new antitumor agent. Science 132(3443):1897PubMedCrossRefPubMedCentralGoogle Scholar
  114. Rouhana-Toubi A, Wasser SP (2015) The shaggy ink cap medicinal mushroom, Coprinus comatus (higher Basidiomycetes) extract induces apoptosis in ovarian cancer cells via extrinsic and intrinsic apoptotic pathways. Int J Med Mushrooms 17(12):1127–1136PubMedCrossRefPubMedCentralGoogle Scholar
  115. Royse D, Baars JJP, Tan Q (2017) Current overview of mushroom production in the world: technology and applications. Zied DC, Pardo-Gimà A, editors: John Wiley & Sons 5–13 pGoogle Scholar
  116. Sadi G, Kaya A, Yalcin HA, Emsen B, Kocabas A, Kartal DI, Altay A (2016) Wild edible mushrooms from Turkey as possible anticancer agents on HepG2 cells together with their antioxidant and antimicrobial properties. Int J Med Mushrooms 18(1):83–95PubMedCrossRefPubMedCentralGoogle Scholar
  117. Shah SK, Walker PA, Moore-Olufemi SD, Sundaresan A, Kulkarni AD, Andrassy RJ (2011) An evidence-based review of a Lentinula edodes mushroom extract as complementary therapy in the surgical oncology patient. J Parenter Enter Nutr 35(4):449–458CrossRefGoogle Scholar
  118. Shiao MS (2003) Natural products of the medicinal fungus Ganoderma lucidum: occurrence, biological activities, and pharmacological functions. Chem Rec 3(3):172–180PubMedCrossRefPubMedCentralGoogle Scholar
  119. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics. CA Cancer J Clin 67(1):7–30PubMedCrossRefPubMedCentralGoogle Scholar
  120. Silberborth S, Stumpf A, Erkel G, Anke T, Sterner O (2002) Gerronemins A–F, cytotoxic biscatechols from a Gerronema species. Phytochemistry 59(6):643–648PubMedCrossRefPubMedCentralGoogle Scholar
  121. Singdevsachan SK, Auroshree P, Mishra J, Baliyarsingh B, Tayung K, Thatoi H (2016) Mushroom polysaccharides as potential prebiotics with their antitumor and immunomodulating properties: A review. Bioact Carbohydr Dietary Fibre 7(1):1–14CrossRefGoogle Scholar
  122. Singh SR, Preet Kaur H, Rakesh Kanwar J (2016) Mushroom lectins as promising anticancer substances. Curr Protein Pept Sci 17(8):797–807PubMedCrossRefPubMedCentralGoogle Scholar
  123. Sliva D (2010) Medicinal mushroom Phellinus linteus as an alternative cancer therapy. Exp Ther Med 1(3):407–411PubMedPubMedCentralCrossRefGoogle Scholar
  124. Song TY, Hsu SL, Yeh CT, Yen GC (2005) Mycelia from Antrodia camphorata in submerged culture induce apoptosis of human hepatoma HepG2 cells possibly through regulation of FAS pathway. J Agric Food Chem 53(14):5559–5564PubMedCrossRefPubMedCentralGoogle Scholar
  125. Spelman K, Sutherland E, Bagade A (2017) Neurological activity of Lion’s Mane (Hericium erinaceus) J. Restorative Med 6(1):19–26CrossRefGoogle Scholar
  126. Sternberg SS, Philips FS, Cronin AP, Sodergren JE, Vidal PM (1963) Toxicological studies of calvacin. Cancer Res 23:1036–1044PubMedPubMedCentralGoogle Scholar
  127. Su YK, Shih PH, Lee WH, Bamodu OA, Wu ATH, Huang CC (2017) Antrodia cinnamomea sensitizes radio-/chemo-therapy of cancer stem-like cells by modulating microRNA expression. J Ethnopharmacol 207:47–56PubMedCrossRefPubMedCentralGoogle Scholar
  128. Takaku T, Kimura Y, Okuda H (2001) Isolation of an antitumor compound from Agaricus blazei Murill and its mechanism of action. J Nutr 131(5):1409–1413PubMedCrossRefPubMedCentralGoogle Scholar
  129. Tan NH, Fung SY, Pailoor J, Tan CS, Ng ST (2016) Nutritional composition, antioxidant properties and toxicology evaluation of the sclerotium of Tiger Milk mushroom Lignosus tigris cultivar E. Nutr Res 36(2):174–183PubMedCrossRefPubMedCentralGoogle Scholar
  130. Tanaka A, Nishimura M, Sato Y, Sato H, Nishihira J (2016) Enhancement of the Th1-phenotype immune system by the intake of Oyster mushroom (Tamogitake) extract in a double-blind, placebo-controlled study. J Tradit Complement Med 6(4):424–430PubMedCrossRefPubMedCentralGoogle Scholar
  131. Torisu M, Hayashi Y, Ishimitsu T, Fujimura T, Iwasaki K, Katano M (1990) Significant prolongation of disease-free period gained by oral polysaccharide K (PSK) administration after curative surgical operation of colorectal cancer. Cancer Immunol Immunother 31(5):261–268CrossRefGoogle Scholar
  132. Torkelson CJ, Sweet E, Martzen MR, Sasagawa M, Wenner CA, Gay J (2012) Phase 1 clinical trial of Trametes versicolor in women with breast cancer. ISRN Oncology 2012:7CrossRefGoogle Scholar
  133. Turner J, Chaudhary U (2009) Dramatic prostate-specific antigen response with activated hemicellulose compound in metastatic castration-resistant prostate cancer. Anti-Cancer Drugs 20(3):215–216PubMedCrossRefPubMedCentralGoogle Scholar
  134. Uno K, Kosuna K, Sun B, Fujii H, Wakame K, Chikumaru S, Hosokawa G, Ueda Y (2000) Active hexose correlated compound (AHCC) improves immunological parameters and performance status of patients with solid tumors. Biotherapy 14(3):303–307Google Scholar
  135. UK, C.R. (2016) Retrieved from http://www.cancerresearchuk.org
  136. Vetter J (1998) Toxins of Amanita phalloides. Toxicon 36(1):13–24PubMedCrossRefPubMedCentralGoogle Scholar
  137. Wan JM-F, Sit W-H, Yang X, Jiang P, Wong LL-Y (2010) Polysaccharopeptides derived from Coriolus versicolor potentiate the S-phase specific cytotoxicity of Camptothecin (CPT) on human leukemia HL-60 cells. Chin Med 5(1):16PubMedPubMedCentralCrossRefGoogle Scholar
  138. Wang C-W, Hsu W-H, Tai C-J (2017) Antimetastatic effects of cordycepin mediated by the inhibition of mitochondrial activity and estrogen-related receptor α in human ovarian carcinoma cells. Oncotarget 8(2):3049–3058PubMedPubMedCentralGoogle Scholar
  139. Wasser S (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60(3):258–274CrossRefGoogle Scholar
  140. Wasser SP, Weis AL (1999) Medicinal properties of substances occurring in higher basidiomycetes mushrooms: current perspectives. Int J Med Mushrooms 1:31–62.  https://doi.org/10.1615/IntJMedMushrooms.v1.i1.30CrossRefGoogle Scholar
  141. WHO (2017) Cancer. Fact Sheet. WHO Media centreGoogle Scholar
  142. Won JS (2002) The hematoimmunologic effect of AHCC for Korean patients with various cancers. Biotherapy 16(6):560–564Google Scholar
  143. Xu X, Yan H, Chen J, Zhang X (2011) Bioactive proteins from mushrooms. Biotechnol Adv 29(6):667–674PubMedCrossRefGoogle Scholar
  144. Yamaguchi Y (2016) Immunotherapy of cancer: an innovative treatment comes of age. Springer, TokyoCrossRefGoogle Scholar
  145. Yang P, Liang M, Zhang Y, Shen B (2008) Clinical application of a combination therapy of lentinan, multi-electrode RFA and TACE in HCC. Advan Ther 25(8):787–794CrossRefGoogle Scholar
  146. Yang HL, Kuo YH, Tsai CT, Huang YT, Chen SC, Chang HW (2011) Anti-metastatic activities of Antrodia camphorata against human breast cancer cells mediated through suppression of the MAPK signaling pathway. Food Chem Toxicol 49(1):290–298PubMedCrossRefPubMedCentralGoogle Scholar
  147. Yap H-YY, Fung SY, Ng ST, Tan CS, Tan NH (2015) Shotgun proteomic analysis of tiger milk mushroom (Lignosus rhinocerotis) and the isolation of a cytotoxic fungal serine protease from its sclerotium. J Ethnopharmacol 174:437–451PubMedCrossRefPubMedCentralGoogle Scholar
  148. You BJ, Tien N, Lee MH, Bao BY, Wu YS, Hu TC, Lee HZ (2017) Induction of apoptosis and ganoderic acid biosynthesis by cAMP signaling in Ganoderma lucidum. Sci Rep 7(1):318PubMedPubMedCentralCrossRefGoogle Scholar
  149. Zhang J, Wang G, Li H, Zhuang C, Mizuno T, Ito H et al (1994) Antitumor polysaccharides from a Chinese mushroom,“yuhuangmo” the fruiting body of Pleurotus citrinopileatus. Biosci Biotechnol Biochem 58(7):1195–1201PubMedCrossRefPubMedCentralGoogle Scholar
  150. Zhang H, Morisaki T, Nakahara C, Matsunaga H, Sato N, Nagumo F (2003) PSK-mediated NF-κB inhibition augments docetaxel-induced apoptosis in human pancreatic cancer cells NOR-P1. Oncogene 22(14):2088–2096PubMedCrossRefPubMedCentralGoogle Scholar
  151. Zhang G, Sun J, Wang H, Ng T (2009) A novel lectin with antiproliferative activity from the medicinal mushroom Pholiota adiposa. Acta Biochim Pol 56(3):415–421PubMedPubMedCentralGoogle Scholar
  152. Zhang G, Sun J, Wang H, Ng TB (2010) First isolation and characterization of a novel lectin with potent antitumor activity from a Russula mushroom. Phytomedicine 17(10):775–781PubMedCrossRefPubMedCentralGoogle Scholar
  153. Zhang P, Li K, Yang G, Xia C, Polston JE, Li G, Li S, Lin Z, Yang LJ, Bruner SD, Ding Y (2017) Cytotoxic protein from the mushroom Coprinus comatus possesses a unique mode for glycan binding and specificity. Proc Natl Acad Sci 14(34):8980–8985CrossRefGoogle Scholar
  154. Zhao C, Sun H, Tong X, Qi Y (2003) An antitumour lectin from the edible mushroom Agrocybe aegerita. Biochem J 374(2):321–327PubMedPubMedCentralCrossRefGoogle Scholar
  155. Zhao S, Zhao Y, Li S, Zhao J, Zhang G, Wang H (2010) A novel lectin with highly potent antiproliferative and HIV-1 reverse transcriptase inhibitor activities from the edible wild mushroom Russula delica. Glycoconj J 27(2):259–265PubMedCrossRefPubMedCentralGoogle Scholar
  156. Zong A, Cao H, Wang F (2012) Anticancer polysaccharides from natural resources: a review of recent research. Carbohydr Polym 90(4):1395–1410CrossRefGoogle Scholar
  157. Zhou S, Gao Y, Chan E (2005) Clinical trials for medicinal mushrooms: Experience with Ganoderma lucidum (W.Curt.:Fr.) Lloyd (Lingzhi Mushroom). Int J Med Mushrooms 7(1&2):111-118  https://doi.org/10.1615/IntJMedMushr.v7.i12.110CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Peter Chiew Hing Cheong
    • 1
  • Chon Seng Tan
    • 2
  • Shin Yee Fung
    • 1
    • 3
    • 4
    Email author
  1. 1.Medicinal Mushroom Research Group (MMRG), Department of Molecular MedicineUniversity of MalayaKuala LumpurMalaysia
  2. 2.Ligno Research FoundationSelangorMalaysia
  3. 3.Centre for Natural Products Research and Drug Discovery (CENAR)University of MalayaKuala LumpurMalaysia
  4. 4.University of Malaya Centre for Proteomics Research (UMCPR), University of MalayaKuala LumpurMalaysia

Personalised recommendations