Advertisement

The Microvascular Pericyte: Approaches to Isolation, Characterization, and Cultivation

  • Paula Dore-Duffy
  • Nilufer Esen
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1109)

Abstract

The microvascular pericyte was identified in 1873 by the French scientist Charles Benjamin Rouget and originally called the Rouget cell (Rouget.Sciences 88:916–8, 1879). However, it was not until the early 1900s that Rouget’s work was confirmed, and the Rouget cell renamed the pericyte by virtue of its peri-endothelial location (Dore. Brit J Dermatol 35:398–404, 1923; Zimmermann. Z Anat Entwicklungsgesch 68:3–109, 1923). Over the years a large number of publications have emerged, but the pericyte has remained a truly enigmatic cell. This is due, in part, by the paucity of easy and reliable methods to isolate and characterize the cell as well as its heterogeneity and pluripotent characteristics. However, more recent advances in molecular genetics and development of novel cell isolation and imaging techniques have enable scientists to more readily define pericyte function. This chapter will discuss general approaches to the isolation, characterization, and propagation of primary pericytes in the establishment of cell lines. We will attempt to dispel misinterpretations about the pericyte that cloud the literature.

Keywords

Human pericytes Pluripotent cells Immortalized cell lines Microvessels Fat pericytes Isolation Cell culture Magnetic beads FAC sorting and FACS analysis Differential adhesion Migration PDGFRβ+ Central nervous system 

References

  1. 1.
    Rouget C-MB (1879) Sur la contractilité capillaires sanguins. Comptes rendus de l’Académie des. Sciences 88:916–918Google Scholar
  2. 2.
    Dore SE (1923) On the contractility and nervous supply of the capillaries. Brit J Dermatol 35:398–404CrossRefGoogle Scholar
  3. 3.
    Zimmermann KW (1923) Der feinere bau der blutcapillares. Z Anat Entwicklungsgesch 68:3–109CrossRefGoogle Scholar
  4. 4.
    Buzney SM, Massicotte SJ, Hetu N, Zetter BR (1983) Retinal vascular endothelial cells and pericytes. Differential growth characteristics. IOVS 24(4):470–480Google Scholar
  5. 5.
    Gitlin JD, D’Amore PA (1983) Culture of retinal capillary cells using selective growth media. Microvasc Res 1:74–80CrossRefGoogle Scholar
  6. 6.
    Herman IM, Jacobson S (1988) In situ analysis of microvascular pericytes in hypertensive rat brains. Tissue Cell 1:1–12CrossRefGoogle Scholar
  7. 7.
    Sussman I, Carson MP, Schultz V et al (1988) Chronic exposure to high glucose decreases myo-inositol in cultured cerebral microvascular pericytes but not in endothelium. Diabetologia 10:771–775CrossRefGoogle Scholar
  8. 8.
    Balabanov R, Washington R, Wagnerova J, Dore-Duffy P (1996) CNS microvascular pericytes express macrophage-like function, cell surface integrin aM, and macrophage marker ED-2. Microvasc Res 52:127–142CrossRefPubMedGoogle Scholar
  9. 9.
    Balabanov R, Dore-Duffy P (1988) Role of the CNS microvascular pericyte in the blood brain barrier. Neurosci Res 6:637–644Google Scholar
  10. 10.
    Choudry AR (2017) Cell isolation and separation techniques. Mater Methods 7:2260–2285Google Scholar
  11. 11.
    Frank RN, Turczyn TJ, Das A (1990) Pericyte coverage of retinal and cerebral capillaries. Invest Ophthalmol Vis Sci 31:999–1007PubMedGoogle Scholar
  12. 12.
    Cuthbertson RA, Mandel TE (1986) Anatomy of the mouse retina. Capillary basement membrane thickness. Invest Opthamol 27:1653–1658Google Scholar
  13. 13.
    Geevarghese A, Herman IM (2014) Pericyte-endothelial cross-talk: implications and opportunities for advanced cellular therapies. Transl Res 163(4):296–306CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chou J, Rollins S, Fawzi AA (2014) Role of endothelial cell and pericyte dysfunction in diabetic retinopathy: review of techniques in rodent models. Adv Exp Med Biol 801:669–675.  https://doi.org/10.1007/978-1-4614-3209-8_84 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bonkowski D, Katyshev V, Balabanov RD, Borisov A, Dore-Duffy P (2011) The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS 8:8CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chen J, Luo Y, Hui H et al (2017) CD146 coordinates brain endothelial cell–pericyte communication for blood–brain barrier development. PNAS 114:E7622–E7631.  https://doi.org/10.1073/pnas.171084811 CrossRefPubMedGoogle Scholar
  17. 17.
    Nayak RC, Herman IM (2001) Bovine retinal microvascular pericytes: isolation, propagation and identification. In: Murray C (ed) Methods in molecular medicine: angiogenesis protocols. Humana Press Inc., Totowa, pp 247–263Google Scholar
  18. 18.
    Crouch EE, Doetsch F (2018) FACS isolation of endothelial cells and pericytes from mouse brain microregions. Nat Protoc 13(4):738–751.  https://doi.org/10.1038/nprot.2017.158 CrossRefPubMedGoogle Scholar
  19. 19.
    Epshtein A, Sakhneny L, Landsman L (2017) Isolating and analyzing cells of the pancreas mesenchyme by flow cytometry. J Vis Exp 119:55344.  https://doi.org/10.3791/55344 CrossRefGoogle Scholar
  20. 20.
    Boroujerdi A, Tigges U, Welser-Alves JV, Milner R (2014) Isolation and culture of primary pericytes from mouse brain. In: Milner R (ed) Cerebral angiogenesis. Methods in molecular biology, vol 1135. Humana Press, New York, pp 383–392CrossRefGoogle Scholar
  21. 21.
    Nees S, Weiss DR, Senftl A, Knott M, Förch S, Schnurr M, Weyrich P, Juchem G (2012) Isolation, bulk cultivation, and characterization of coronary microvascular pericytes: the second most frequent myocardial cell type in vitro. Am J Physiol Heart Circ Physiol 302(1):H69–H84.  https://doi.org/10.1152/ajpheart.00359.2011 CrossRefPubMedGoogle Scholar
  22. 22.
    Dore-Duffy P (2003) Isolation and characterization of cerebral microvascular pericytes. Methods Mol Med 89:375–382.  https://doi.org/10.1385/1-59259-419-0:375 CrossRefPubMedGoogle Scholar
  23. 23.
    Chen WC, Saparov A, Corselli M et al (2014) Isolation of blood-vessel-derived multipotent precursors from human skeletal muscle. J Vis Exp (90):e51195.  https://doi.org/10.3791/51195
  24. 24.
    Lykkemark S, Mandrup OA, Jensen MB et al (2017) A novel excision selection method for isolation of antibodies binding antigens expressed specifically by rare cells in tissue sections. Nucleic Acids Res 45(11):e107.  https://doi.org/10.1093/nar/gkx207 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Thomsen LB, Burkhart A, Moos T (2015) A triple culture model of the blood-brain barrier using porcine brain endothelial cells, astrocytes and pericytes. PLoS One 10(8):e0134765.  https://doi.org/10.1371/journal.pone.0134765 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Valente S, Alviano F, Ciavarella C et al (2014) Human cadaver multipotent stromal/stem cells isolated from arteries stored in liquid nitrogen for 5 years. Stem Cell Res Ther 5(1):8.  https://doi.org/10.1186/scrt397 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wysocki LI, Sato VL (1978) Panning for lymphocytes: a method for cell selection. Proc Natl Acad Sci U S A 75:2844–2848CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhou L, Sohet F, Daneman R (2014) Purification of pericytes from rodent optic nerve by immunopanning. Cold Spring Harb Protoc 2014(6):608–617.  https://doi.org/10.1101/pdb.prot074955 CrossRefPubMedGoogle Scholar
  29. 29.
    Zhou L, Sohet F, Daneman R (2014) Purification and culture of central nervous system pericytes. Cold Spring Harb Protoc 2014(6):581–583.  https://doi.org/10.1101/pdb.top070888 CrossRefPubMedGoogle Scholar
  30. 30.
    Dore-Duffy P, Mehedi A, Wang X, Gow A (2011) Immortalized CNS pericytes are quiescent smooth muscle actin-negative and pluripotent. Microvasc Res 82:18–27.  https://doi.org/10.1016/j.mvr.2011.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Crouch EE, Doetsch F (2014) Isolation and culture of primary pericytes from mouse brain. Methods Mol Biol 1135:383–392.  https://doi.org/10.1007/978-1-4939-0320-7_31 CrossRefGoogle Scholar
  32. 32.
    D’Amore PA (1990) Culture and study of pericytes. In: Piper HM (ed) Cell culture techniques in heart and vessel research. Springer, Berlin.  https://doi.org/10.1007/978-3-642-75262-9_20 CrossRefGoogle Scholar
  33. 33.
    Unger RE, Oltrogge JB, Von Briesen H et al (2002) Isolation and molecular characterization of brain microvascular endothelial cells from human brain tumors. In Vitro Cell Dev Biol Anim 38(5):273–281CrossRefPubMedGoogle Scholar
  34. 34.
    Wu Z, Hofman F, Zlokovic BV (2003) A simple method for isolation and characterization of mouse brain microvascular endothelial cells. J Neurosci Methods 130:53–63CrossRefPubMedGoogle Scholar
  35. 35.
    Nirwane A, Gautam J, Yao Y (2017) Isolation of type I and type II pericytes from mouse skeletal muscles. J Vis Exp (123).  https://doi.org/10.3791/55904
  36. 36.
    Harik SI, Doull GH, Dick AP (1985) Specific ouabain binding to the brain microvessels and choroid plexus. JCBFM 5:156–160Google Scholar
  37. 37.
    Joo F, Karnushina I (1973) A procedure for the isolation of capillaries from rat brain. Cytobios 8:41–48PubMedGoogle Scholar
  38. 38.
    DeBault LE, Kahn LE, Frommes SP et al (1979) In Vitro 15(7):473–487.  https://doi.org/10.1007/BF02618149 CrossRefPubMedGoogle Scholar
  39. 39.
    Bowman PD, Betz AL, Jerry DD et al (1981) Primary culture of capillary endothelium from the rat brain. In Vitro 17(4):353–362CrossRefPubMedGoogle Scholar
  40. 40.
    Boulay AC, Saubaméa B, Declèves X et al (2015) Purification of mouse brain vessels. J Vis Exp (105):e53208.  https://doi.org/10.3791/53208
  41. 41.
    White FP, Dutton GR, Norenberg MD (1981) Microvessels isolated from rat brain: localization of astrocyte processes by immunohistochemical techniques. J Neurochem 36:328–332CrossRefPubMedGoogle Scholar
  42. 42.
    Murray JC, Hewett PW (1993) Human microvessel endothelial cells: isolation, culture and characterization. In Vitro Cell Dev Biol Anim 29A:823–830PubMedGoogle Scholar
  43. 43.
    Hayashi K, Epstein M, Loutzenhiser R (1989) Pressure-induced vasoconstriction of renal microvessels in normotensive and hypertensive rats. Studies in the isolated perfused hydronephrotic kidney. Circ Res 65:1475–1484CrossRefPubMedGoogle Scholar
  44. 44.
    Davison PM, Bensch K, Karasek MA (1980) Isolation and growth of endothelial cells from the microvessels of the newborn human foreskin in cell culture. J Invest Dermatol 75(10):316–321CrossRefPubMedGoogle Scholar
  45. 45.
    Nees S, Weiss DR, Senftl A et al (2012) Isolation, bulk cultivation, and characterization of coronary microvascular pericytes: the second most frequent myocardial cell type in vitro. Am J Physiol Heart Circ Physiol 302(1):H69–H84.  https://doi.org/10.1152/ajpheart.00359.2011 CrossRefPubMedGoogle Scholar
  46. 46.
    Nunes SS, Krishman L, Gerard CS et al (2010) Angiogenic potential of microvascular fragments is independent on the tissue of origin and can be influenced by the cellular composition of the implants. Microcirculation 17:557–567PubMedPubMedCentralGoogle Scholar
  47. 47.
    Asashima T, Lizasa H, Terasaki T et al (2002) Newly developed rat brain pericyte cell line, TR-PCT1, responds to transforming growth factor-beta1 and beta- glycerophosphate. Eur J Cell Biol 81:145–152CrossRefPubMedGoogle Scholar
  48. 48.
    Berrone E, Beltramo E, Buttiglieri S et al (2009) Establishment and characterization of a human retinal pericyte line: a novel tool for the study of diabetic retinopathy. Int J Mol Med 23:373–378PubMedGoogle Scholar
  49. 49.
    Jat PS, Noble MD, Ataliotis P et al (1991) Direct derivation of conditionally immortal cell lines from an H-2Kb-tsA58 transgenic mouse. Proc Natl Acad Sci U S A 88:5096–5100CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Noble M (1992) From chance to choice in the generation of neural cell lines. Brain Pathol 2:39–46PubMedGoogle Scholar
  51. 51.
    Barber RD, Hendereson RM (1996) Inhibition by P1075 and pinacidil of calcium-independent chloride conductance in conditionally-immortal renal glomerular mesangial cells. Br J Pharmacol 119:772–778CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Dennis JE, Caplan AI (1996) Differentiation potential of conditionally immortalized mesenchymal progenitor cells from adult marrow of a H-2K(b)-tsA58 transgenic mouse. J Cell Physiol 167:523–538CrossRefPubMedGoogle Scholar
  53. 53.
    Kanda S, Landgren E, Ljungstrom M et al (1996) Fibroblast growth factor receptor 1-induced differentiation of endothelial cell line established from tsA58 large T transgenic mice. Cell Growth Differ 7:383–395PubMedGoogle Scholar
  54. 54.
    Walther N, Jansen M, Ergun S et al (1996) Sertoli cell lines established from H-2Kb-tsA58 transgenic mice differentially regulate the expression of cell-specific genes. Exp Cell Res 225:411–421CrossRefPubMedGoogle Scholar
  55. 55.
    Barald KF, Lindberg KH, Hardiman K et al (1997) Immortalized cell lines from embryonic avian and murine otocysts: tools for molecular studies of the developing inner ear. Int J Dev Neurosci 15:523–540CrossRefPubMedGoogle Scholar
  56. 56.
    Morgan JE, Beauchamp JR, Pagel CN et al (1994) Myogenic cell lines derived from transgenic mice carrying a thermolabile T antigen: a model system for the derivation of tissue-specific and mutation-specific cell lines. Dev Biol 162:486–498CrossRefPubMedGoogle Scholar
  57. 57.
    Ehler E, Jat PS, Noble MD et al (1995) Vascular smooth muscle cells of H-2Kb-tsA58 transgenic mice: characterization of cell lines with distinct properties. Circulation 92:3289–3296CrossRefPubMedGoogle Scholar
  58. 58.
    Whitehead RH, Van Eeden PE, Noble MD et al (1993) Establishment of conditionally immortalized epithelial cell lines from both colon and small intestine of adult H-2Kb-tsA58 transgenic mice. Proc Natl Acad Sci U S A 90(2):587–591CrossRefGoogle Scholar
  59. 59.
    Kershaw TR, Rashid Doubell F et al (1994) Immunocharacterization of H-2Kb-tsA58 transgenic mouse hippocampal neuroepithelial cells. Neuroreport 5:2197–2200CrossRefPubMedGoogle Scholar
  60. 60.
    Whitehead RH, Joseph JL (1994) Derivation of conditionally immortalized cell lines containing the Min mutation from the normal colonic mucosa and other tissues of an ‘Immorto-mouse’/Min hybrid. Epithelial Cell Biol 3:19–125Google Scholar
  61. 61.
    Paradis K, Le ONL, Russo PH et al (1995) Characterization and response to interleukin 1 and tumor necrosis factor of immortalized murine biliary epithelial cells. Gastroenterology 109:1308–1315CrossRefPubMedGoogle Scholar
  62. 62.
    Groves AK, Entwistle A, Jat PS et al (1993) The characterization of astrocyte cell lines that display properties of glial scar tissue. Dev Biol 159(1):87–104CrossRefPubMedGoogle Scholar
  63. 63.
    Chambers TJ, Owens JM, Hattersley G et al (1993) Generation of osteoclast-inductive and osteoclastogenic cell lines from the H-2KbtsA58 transgenic mouse. Proc Natl Acad Sci U S A 90:5578–5582CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Holley MC, Lawler PW (1997) Production of conditionally immortalized cell lines from a transgenic mouse. Audiol Neurootol 2:25–35CrossRefPubMedGoogle Scholar
  65. 65.
    Greenwood-Goodwin M, Yang J, Hassanipour M et al (2016) A novel lineage restricted, pericyte-like cell line isolated from human embryonic stem cells. Sci Rep 6:24403.  https://doi.org/10.1038/srep24403 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Almeida M, Garcia-Montero A, Orfao A (2014) Cell purification: a new challenge for biobanks. Pathobiology 81:261–275CrossRefPubMedGoogle Scholar
  67. 67.
    Ge S, Pachter JS (2006) Isolation and culture of microvascular endothelial cells from murine spinal cord. J Neuroimmunol 177:209–214CrossRefPubMedGoogle Scholar
  68. 68.
    Hirase H, Creso J, Singleton M et al (2004) Two-photon imaging of brain pericytes in vivo using dextran-conjugated dyes. Glia 46:95–100CrossRefPubMedGoogle Scholar
  69. 69.
    Fernández-Klett F, Offenhauser N, Dirnagl U et al (2010) Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. PNAS 107:22290–22295CrossRefPubMedGoogle Scholar
  70. 70.
    Cho EE, Drazic J, Ganguly M et al (2011) Two-photon fluorescence microscopy study of cerebrovascular dynamics in ultrasound-induced blood–brain barrier opening. J Cereb Blood Flow Metab 31:1852–1862CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Berthiaume AA, Grant RI, McDowell KP et al (2018) Dynamic remodeling of pericytes in vivo maintains pericyte coverage in adult mouse brain. Cell Rep 22:8–16CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Hill RA, Damisah EC, Chen F et al (2017) Targeted two-photon chemical apoptotic ablation of defined cell types in vivo. Nat Commun 8(15837).  https://doi.org/10.1038/ncomms15837 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Wu J, Chen Q, Lin JM (2017) Microfluidic technologies in cell isolation and analysis for biomedical applications. Analyst 142:421–441CrossRefPubMedGoogle Scholar
  74. 74.
    Chen Y, Li P, Huang Y et al (2014) Rare cell isolation and analysis in microfluidics. Lab Chip 14:626–645CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Shields WC IV, Reyes CD, Lopez CP (2015) Microfluidic cell sorting: a review of the advances in the separation of cells from bulk to rare cell isolation. Lab Chip 15:1230–1249CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Cheng S, Xie M, Xu J et al (2016) High-efficiency capture of individual and cluster of circulating tumor cells by a microchip embedded with three-dimensional poly(dimethylsiloxane) scaffold. Anal Chem 88:6773–6780CrossRefPubMedGoogle Scholar
  77. 77.
    Gao Y, Li W, Pappas D (2013) Recent advances in microfluidic cell separations. Analyst 138:4714–4721CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Wang JD, El-Soyet K, Khanafer K et al (2016) Organization of endothelial cells, pericytes, and astrocytes into a 3D in vitro model of the blood brain barrier. Mol Pharm 13:895–906Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Neurology, School of MedicineWayne State UniversityDetroitUSA

Personalised recommendations