A Few Notions of Stability and Bifurcation Theory

  • Raluca Eftimie
Part of the Lecture Notes in Mathematics book series (LNM, volume 2232)


While numerical approaches are a very important step in investigating the patterns exhibited by the hyperbolic and kinetic models discussed in the previous chapters, they could be slow and might not offer a full understanding of the models’ dynamics due to the very large parameter space associated with some models. In contrast, stability theory could identify the parameter conditions under which a pattern could form, and eventually could become unstable giving rise to a different pattern. A deeper understanding of the formation of various spatial and spatio-temporal patterns is offered by bifurcation theory, which can distil the mathematical and biological mechanisms not only behind the formation of patterns, but also behind the transitions between different spatial and spatio-temporal patterns. In this Chapter, we review some basic notions of linear stability analysis for pattern formation in ordinary differential equations and partial differential equations, as well as basic notions of symmetry theory and bifurcation theory. We also present in more details the weakly nonlinear analysis approach for pattern investigation and classification. Finally, we discuss some drawbacks of bifurcation theory (e.g. centre manifold reduction) for infinite-dimensional dynamical systems.


  1. 1.
    W. Holmes, Bull. Math. Biol. 76(1), 157 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    R. Hoyle, Pattern Formation. An Introduction to Methods (Cambridge University Press, Cambridge, 2006)Google Scholar
  3. 3.
    M. Golubitsky, I. Stewart, The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space (Birkhäuser, Basel, 2002)Google Scholar
  4. 4.
    P. Chossat, R. Lauterbach, Methods in Equivariant Bifurcations and Dynamical Systems (World Scientific Publishing, Singapore, 2000)zbMATHCrossRefGoogle Scholar
  5. 5.
    M. Haragus, G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems (Springer, London, 2010)zbMATHGoogle Scholar
  6. 6.
    Y. Kuznetsov, Elements of Applied Bifurcation Theory, 2nd edn. (Springer, New York, 2000)Google Scholar
  7. 7.
    S. Strogatz, Nonlinear Dynamics and Chaos (Westview Press, Boulder, 1994)Google Scholar
  8. 8.
    J.D. Murray, Mathematical Biology (Springer, New York, 1989)zbMATHCrossRefGoogle Scholar
  9. 9.
    L. Perko, Differential Equations and Dynamical Systems (Springer, New York, 2000)zbMATHGoogle Scholar
  10. 10.
    C. Chicone, Ordinary Differential Equations with Applications (Springer, New York, 1999)zbMATHGoogle Scholar
  11. 11.
    R. Eftimie, G. de Vries, M.A. Lewis, Proc. Natl. Acad. Sci. USA 104(17), 6974 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    T. Kolokolnikov, M. Ward, J. Wei, Discr. Contin. Dyn. Syst. Ser. B 19(5), 1373 (2014)CrossRefGoogle Scholar
  13. 13.
    T. Kolokolnikov, W. Sun, M. Ward, J. Wei, SIAM J. Appl. Dyn. Syst. 5(2), 313 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    R. Eftimie, G. de Vries, M.A. Lewis, F. Lutscher, Bull. Math. Biol. 69(5), 1537 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    F. Lutscher, J. Math. Biol. 45, 234 (2002)MathSciNetCrossRefGoogle Scholar
  16. 16.
    H. Poincaré, Acta Math. 7, 259 (1885)MathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Golubitsky, I. Stewart, D.G. Schaeffer, Singularities and Groups in Bifurcation Theory. Volume II (Springer, New York, 1988)Google Scholar
  18. 18.
    R. Seydel, Practical Bifurcation and Stability Analysis (Springer, New York, 2009)zbMATHGoogle Scholar
  19. 19.
    J.C. Robinson, Infinite-Dimensional Dynamical Systems (Cambridge University Press, Cambridge, 2001)CrossRefGoogle Scholar
  20. 20.
    L. Evans, Partial Differential Equations (American Mathematical Society, Providence, 1997)Google Scholar
  21. 21.
    H. Knobloch, B. Aulbach, in Equadiff5, Proceedings of the Fifth G. Teubner Verlagsgesellschaft, ed. by M. Greguš (Teubner, Leipzig, 1982), pp. 179–189Google Scholar
  22. 22.
    E. Altshuler, O. Ramos, Y.N. ez, J. Fernández, A. Batista-Leyva, C. Noda, Am. Nat. 166(6), 643 (2005)Google Scholar
  23. 23.
    G. Li, D. Huan, B. Roehner, Y. Xu, L. Zeng, Z. Di, Z. Han, PLoS One 9(12), e114517 (2014)CrossRefGoogle Scholar
  24. 24.
    Y.K. Chung, C.C. Lin, PLoS One 12(3), e0173642 (2017)CrossRefGoogle Scholar
  25. 25.
    Q. Ji, C. Xin, S. Tang, J. Huang, Phys. A Stat. Mech. Appl. 492, 941 (2018)CrossRefGoogle Scholar
  26. 26.
    N. Zabzina, A. Dussutour, R. Mann, D. Sumpter, S. Nicolis, PLoS Comput. Biol. 10(12), e1003960 (2014)CrossRefGoogle Scholar
  27. 27.
    P.L. Buono, R. Eftimie, Math. Models Methods Appl. Sci. 24(2), 327–357 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    P.L. Buono, R. Eftimie, SIAM J. Appl. Dyn. Sys. 13(4), 1542 (2014)CrossRefGoogle Scholar
  29. 29.
    P.L. Buono, R. Eftimie, J. Math. Biol. 71(4), 847 (2014)CrossRefGoogle Scholar
  30. 30.
    P.L. Buono, R. Eftimie, Mathematical Sciences with Multidisciplinary Applications. Springer Proceedings in Mathematics & Statistics, vol. 157 (Springer, Cham, 2016), pp. 29–59Google Scholar
  31. 31.
    J. Massot, R. Bacis, J. Math. Phys. 17, 1392 (1976)CrossRefGoogle Scholar
  32. 32.
    M. Makai, Transp. Theory Stat. Phys. 15(3), 249 (1984)MathSciNetCrossRefGoogle Scholar
  33. 33.
    A. Bobylev, G. Caraffini, G. Spiga, J. Math. Phys. 37(6), 2787 (1996)MathSciNetCrossRefGoogle Scholar
  34. 34.
    S. Takata, J. Stat. Phys. 136(4), 751 (2009)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Y. Grigoriev, S. Meleshko, N. Ibragimov, V. Kovalev, Symmetries of Integro-Differential Equations: With Applications in Mechanics and Plasma Physics (Springer, Dordrecht, 2010)zbMATHCrossRefGoogle Scholar
  36. 36.
    O. Ilyin, Theor. Math. Phys. 186(2), 183 (2016)CrossRefGoogle Scholar
  37. 37.
    A.W.H. Mochaki, J.M. Manale, On Modified Symmetries for the Boltzmann Equation. Proceedings 2, 7 (2018)CrossRefGoogle Scholar
  38. 38.
    I. An, S. Chen, H.Y. Guo, Phys. A Stat. Mech. Appl. 128(3), 520 (1984)CrossRefGoogle Scholar
  39. 39.
    C. Sastri, K. Dunn, J. Math. Phys. 26, 3042 (1985)MathSciNetCrossRefGoogle Scholar
  40. 40.
    P. Rudra, J. Phys. A Math. Gen. 23(10), 1663 (1990)MathSciNetCrossRefGoogle Scholar
  41. 41.
    R. Kozlov, J. Eng. Math. 82(1), 39 (2013)MathSciNetCrossRefGoogle Scholar
  42. 42.
    D. Métivier, Kinetic models, from Kuramoto to Vlasov: bifurcations and experimental analysis of a magneto-optical trap, Université Côte d’Azur (2017) (English)Google Scholar
  43. 43.
    C. Kubrusly, Bull. Belg. Math. Soc. Simon Stevin 15(1), 153 (2008)MathSciNetGoogle Scholar
  44. 44.
    R. Eftimie, G. de Vries, M. Lewis, J. Math. Biol. 59, 37 (2009)MathSciNetCrossRefGoogle Scholar
  45. 45.
    I. Kmit, L. Recke, J. Math. Anal. Appl. 335, 355 (2007)MathSciNetCrossRefGoogle Scholar
  46. 46.
    A. Vanderbauwhede, Lyapunov–Schmidt Method for Dynamical Systems (Springer, New York, 2011), pp. 937–952Google Scholar
  47. 47.
    A. Bressan, D. Serre, M. Williams, K. Zumbrun, Hyperbolic Systems of Balance Laws (Springer, Berlin, 2007)Google Scholar
  48. 48.
    A. Mielke, J. Differ. Equ. 65, 68 (1986)CrossRefGoogle Scholar
  49. 49.
    A. Mielke, Math. Meth. Appl. Sci. 10, 51 (1988)CrossRefGoogle Scholar
  50. 50.
    A. Vanderbauwhede, in Dynamics in Infinite Dimensional Systems, ed. by S.N. Chow, J. Hale (Springer, Berlin , 1987), pp. 409–420CrossRefGoogle Scholar
  51. 51.
    A. Vanderbauwhede, G. Iooss, in Dynamics Reported, vol. 1, ed. by C. Jones, U. Kirchgraber, H. Walter (Springer, Berlin, 1992), pp. 125–163CrossRefGoogle Scholar
  52. 52.
    M. Lichtner, Proc. Am. Math. Soc. 136(6), 2091 (2008)MathSciNetCrossRefGoogle Scholar
  53. 53.
    M. Renardy, Z. Angew. Math. Phys. 45(6), 854 (1994)MathSciNetCrossRefGoogle Scholar
  54. 54.
    M. Renardy, Proc. R. Soc. Edin. Sect. A 122(3–4), 363 (1992)CrossRefGoogle Scholar
  55. 55.
    M. Lichtner, M. Radziunas, L. Recke, Math. Methods Appl. Sci. 30, 931 (2007)MathSciNetCrossRefGoogle Scholar
  56. 56.
    W. Liu, M. Oh, in Infinite Dimensional Dynamical Systems, ed. by J. Mallet-Paret, J. Wu, H. Zhu (Springer, New York, 2013), pp. 169–183CrossRefGoogle Scholar
  57. 57.
    L. Arnold, P. Boxler, Diffusion Processes and Related Problems in Analysis, Volume II. Progress in Probability, vol. 27 (Birkhäuser, Boston, 1992), pp. 241–255zbMATHCrossRefGoogle Scholar
  58. 58.
    D. Blömker, Amplitude Equations for Stochastic Partial Differential Equations (World Scientific Publishing, Singapore, 2007)zbMATHCrossRefGoogle Scholar
  59. 59.
    L. Arnold, Random Dynamical Systems (Springer, Berlin, 1998)zbMATHCrossRefGoogle Scholar
  60. 60.
    H. Crauel, P. Imkeller, M. Steinkamp, Stochastic Dynamics (Springer, New York, 1999), pp. 27–47zbMATHGoogle Scholar
  61. 61.
    C. Kuehn, Physica D 240(12), 1020 (2011)CrossRefGoogle Scholar
  62. 62.
    K. Lika, T. Hallam, J. Math. Biol. 38, 346 (1999)MathSciNetCrossRefGoogle Scholar
  63. 63.
    C.M. Topaz, A.L. Bertozzi, M.A. Lewis, Bull. Math. Bio. 68, 1601 (2006)CrossRefGoogle Scholar
  64. 64.
    K. Fellner, G. Raoul, Math. Comput. Model. 53, 1436 (2011)CrossRefGoogle Scholar
  65. 65.
    K. Fellner, G. Raoul, Math. Models Methods Appl. Sci. 20, 2267 (2010)MathSciNetCrossRefGoogle Scholar
  66. 66.
    G. Raoul, Differ. Integr. Equ. 25(5/6), 417 (2012)MathSciNetGoogle Scholar
  67. 67.
    D. Balagué, J. Carrillo, T. Laurent, G. Raoul, Phys. D Nonlinear Phenom. 260, 5 (2013)CrossRefGoogle Scholar
  68. 68.
    P.H. Chavanis, Phys. A Stat. Mech. Appl. 387, 5716 (2008)MathSciNetCrossRefGoogle Scholar
  69. 69.
    F. Lutscher, A. Stevens, J. Nonlinear Sci. 12, 619 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Raluca Eftimie
    • 1
  1. 1.Division of MathematicsUniversity of DundeeDundeeUK

Personalised recommendations