Advertisement

Multi-Dimensional Transport Equations

  • Raluca Eftimie
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2232)

Abstract

One-dimensional (1D) models are simple enough to be investigated analytically and numerically. However, they are not very biological realistic since the majority of behaviours observed in nature occur in 2D or 3D. In this chapter we review different types of 2D kinetic models derived to investigate the movement and local/nonlocal interactions of individuals inside one or multiple populations of cells/bacteria/animals/pedestrians. In this context, we also discuss a few explicit multi-scale models which assume that the dynamics of the (cell) populations depend on their molecular-level states. While the majority of the models considered here are deterministic, we draw attention to a few models that incorporate explicit stochastic events. In addition to reviewing all these different kinetic models, we present in more detail a few analytical approaches used to investigate these models: from the derivation of mean-field models, to hyperbolic and parabolic scaling, and grazing collision limits.

References

  1. 1.
    D. Trucu, P. Lin, M. Chaplain, Y. Wang, Multiscale Model. Simul. SIAM Interdisciplinary J. 11(1), 309 (2013)CrossRefGoogle Scholar
  2. 2.
    P. Domschke, D. Trucu, A. Gerisch, M. Chaplain, J. Theor. Biol. 361, 41 (2014)CrossRefGoogle Scholar
  3. 3.
    C. Engwer, T. Hillen, M. Knappitsch, C. Surulescu, J. Math. Biol. 71, 551 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    B. Perthame, M. tang, N. Vauchelet, J. Math. Biol. 73(5), 1161 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    C. Engwer, C. Stinner, C. Surulescu, Math. Models Meth. Appl. Sci. 27, 1355 (2017)CrossRefGoogle Scholar
  6. 6.
    A. Hunt, C. Surulescu, Vietnam J. Math. 45, 221 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    C.M. Topaz, A.L. Bertozzi, SIAM J. Appl. Math. 65, 152 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    R. Fetecau, Math. Model. Method. Appl. Sci 21(7), 1539 (2011)CrossRefGoogle Scholar
  9. 9.
    R. Fetecau, J. Meskas, Swarm Intell. https://doi.org/10.1007/s11721-013-0084-9 (2013)CrossRefGoogle Scholar
  10. 10.
    P. Degond, J.G. Liu, S. Motsch, V. Panferov, Methods Appl. Anal. 20, 89 (2013)MathSciNetGoogle Scholar
  11. 11.
    P. Degond, A. Frouvelle, S. Merino-Aceituno, Math. Models Methods Appl. Sci. 27(6), 1005 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Y. Xia, S. Wong, C.W. Shu, Phys. Rev. E 79, 066113 (2009)CrossRefGoogle Scholar
  13. 13.
    N. Bellomo, C. Dogbé, SIAM Rev. 53, 409 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    N. Bellomo, L. Gibelli, Math. Model Meth. Appl. Sci. 25, 2417 (2015)CrossRefGoogle Scholar
  15. 15.
    D. Burini, S.D. Lillo, L. Gibelli, Phys. Life Rev. 16, 123 (2016)CrossRefGoogle Scholar
  16. 16.
    J. Nieto, L. Urrutia, J. Math. Anal. Appl. 433(2), 1055 (2017)CrossRefGoogle Scholar
  17. 17.
    N. Bellomo, C. Dogbé, Math. Models Methods Appl. Sci. 18, 1317 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    R. LeVeque, Numerical Methods for Conservation Laws (Birkhäuser, Basel, 1992)zbMATHCrossRefGoogle Scholar
  19. 19.
    J. Kelkel, C. Surulescu, Math. Models Methods Appl. Sci. 22(3), 1150017 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Y. Dolak, C. Schmeiser, J. Math. Biol. 51, 595 (2005)MathSciNetCrossRefGoogle Scholar
  21. 21.
    R. Hughes, Transport. Res. B 36, 507 (2002)CrossRefGoogle Scholar
  22. 22.
    V. Coscia, C. Canavesio, Math. Models Methods Appl. Sci. 18, 1217 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    M. Lighthill, G. Whitham, Proc. R. Soc. Lond. Ser. A. 229(1178), 317 (1955)CrossRefGoogle Scholar
  24. 24.
    M. Kac, Rocky Mountain J. Math. 4, 497 (1974)MathSciNetCrossRefGoogle Scholar
  25. 25.
    S. Goldstein, Quart. J. Mech. Appl. Math. 4, 129 (1951)MathSciNetCrossRefGoogle Scholar
  26. 26.
    K. Hadeler, Mathematics Inspired by Biology. Lecture Notes in Mathematics (Springer Verlag, 1999), chap. Reaction transport systems in biological modelling, pp. 95–150Google Scholar
  27. 27.
    J. Keller, Proc. Natl. Acad. Sci. USA 101(5), 1120 (2004)MathSciNetCrossRefGoogle Scholar
  28. 28.
    E. Codling, M. Plank, S. Benhamou, J. Roy. Soc. Interface 5(25), 813 (2008)CrossRefGoogle Scholar
  29. 29.
    D. Stroock, Probab. Theory Rel. Fields 28, 305 (1974)Google Scholar
  30. 30.
    H.G. Othmer, S.R. Dunbar, W. Alt, J. Math. Biol. 26, 263 (1988)MathSciNetCrossRefGoogle Scholar
  31. 31.
    W. Alt, J. Math. Biol. 9, 147 (1980)MathSciNetCrossRefGoogle Scholar
  32. 32.
    H. Schwetlick, Annales de l’Institut Henri Poincare 17(4), 523 (2000)MathSciNetCrossRefGoogle Scholar
  33. 33.
    R. Colombo, M. Lécureux-Mercier, Acta Math. Sci. 32(1), 177 (2012)MathSciNetCrossRefGoogle Scholar
  34. 34.
    R. Colombo, M. Garavello, M. Lécureux-Mercier, Math. Models Methods Appl. Sci. 22(4), 1150023 (2012)MathSciNetCrossRefGoogle Scholar
  35. 35.
    M. Lécureux-Mercier, ESAIM Proc. 38, 409 (2012)CrossRefGoogle Scholar
  36. 36.
    A. Majda, A. Bertozzi, Vorticity and Incompressible Flow (Cambridge University Press, Cambridge, 2002)zbMATHGoogle Scholar
  37. 37.
    A. Bertozzi, J. von Brecht, H. Sun, T. Kolokolnikov, D. Uminsky, Comm. Math. Sci. 13(4), 955–985 (2015)CrossRefGoogle Scholar
  38. 38.
    H. Berg, D. Brown, Nature 239, 500 (1972)CrossRefGoogle Scholar
  39. 39.
    T. Hillen, K. Hadeler, Analysis and Numerics for conservation laws (Springer, Berlin, Heidelberg, 2005), chap. Hyperbolic systems and transport equations in mathematical biology, pp. 257–279Google Scholar
  40. 40.
    D. Soll, D. Wessels, Motion Analysis of Living Cells (Wiley, New York, Toronto, 1998)Google Scholar
  41. 41.
    J. Carrillo, M. Fornasier, J. Rosado, G. Toscani, SIAM J. Math. Anal. 42, 218 (2010)MathSciNetCrossRefGoogle Scholar
  42. 42.
    C. Cercignani, The Boltzmann Equation and Its Applications (Springer, 1987)Google Scholar
  43. 43.
    S. Harris, An Introduction to the Theory of the Boltzmann Equation (Courier Corporation, 2012)Google Scholar
  44. 44.
    N. Bellomo, C. Bianca, M. Delitala, Phys. Life Rev. 6, 144 (2009)CrossRefGoogle Scholar
  45. 45.
    D. Helbing, Complex Syst. 6, 391 (1992)Google Scholar
  46. 46.
    E. Geigant, K. Ladizhansky, A. Mogilner, SIAM J. Appl. Math. 59(3), 787 (1998)CrossRefGoogle Scholar
  47. 47.
    E. Geigant, M. Stoll, J. Math. Biol. 46, 537 (2003)MathSciNetCrossRefGoogle Scholar
  48. 48.
    K. Kang, B. Perthame, A. Stevens, J. Velázquez, J. Differ. Equ. 246, 1387 (2009)CrossRefGoogle Scholar
  49. 49.
    T. Hillen, J. Math. Biol. 53(4), 585 (2006)MathSciNetCrossRefGoogle Scholar
  50. 50.
    E. Boissard, P. Degond, S. Motsch, J. Math. Biol. 66(6), 1267 (2013)MathSciNetCrossRefGoogle Scholar
  51. 51.
    L. Saint-Raymond, Hydrodynamic Limits of the Boltzmann Equation (Springer, Berlin, Heidelberg, 2009)zbMATHCrossRefGoogle Scholar
  52. 52.
    S.Y. Ha, E. Tadmor, Kinet. Relat. Models 1(3), 415 (2008)MathSciNetCrossRefGoogle Scholar
  53. 53.
    R. Eftimie, G. de Vries, M.A. Lewis, F. Lutscher, Bull. Math. Biol. 69(5), 1537 (2007)MathSciNetCrossRefGoogle Scholar
  54. 54.
    R. Eftimie, G. de Vries, M.A. Lewis, Proc. Natl. Acad. Sci. USA 104(17), 6974 (2007)MathSciNetCrossRefGoogle Scholar
  55. 55.
    N. Vauchelet, Kinet. Relat. Models 3(3), 501 (2010)MathSciNetCrossRefGoogle Scholar
  56. 56.
    B. Perthame, Bull. Am. Math. Soc. (New Series) 41(2), 205 (2004)Google Scholar
  57. 57.
    N. Bournaveas, V. Calvez, S. Gutiérrez, B. Perthame, Commun. Part. Differ. Equ. 33(1), 79 (2008)CrossRefGoogle Scholar
  58. 58.
    M. Lachowicz, H. Leszczyński, M. Parisot, Math. Models Methods Appl. Sci. 27(6), 1153 (2017)MathSciNetCrossRefGoogle Scholar
  59. 59.
    N. Bournaveas, V. Calvez, Can. Appl. Math. Q. 18(3), 253 (2010)MathSciNetGoogle Scholar
  60. 60.
    G. Toscani, Commun. Math. Sci. 4(3), 481 (2006)MathSciNetCrossRefGoogle Scholar
  61. 61.
    B. Düring, P. Markowich, J.F. Pietschmann, M.T. Wolfram, Proc. R. Soc. A 465(2112), 3687 (2009)MathSciNetCrossRefGoogle Scholar
  62. 62.
    G. Naldi, L. Pareschi, G. Toscani (eds.), Mathematical Modelling of Collective Behaviour in Socio-Economic and Life Sciences (Birkhäuser, 2010)Google Scholar
  63. 63.
    D. Maldarella, L. Pareschi, Phys. A Stat. Mech. Appl. 391(3), 715 (2012)CrossRefGoogle Scholar
  64. 64.
    M. Delitala, T. Lorenzi, Kinet. Relat. Models 7, 29 (2014)MathSciNetCrossRefGoogle Scholar
  65. 65.
    B. Düring, A. Jüngel, L. Trussardi, Kinet. Relat. Models 10(1), 239 (2017)MathSciNetCrossRefGoogle Scholar
  66. 66.
    B. Boghosian, Phys. Rev. E 89, 042804 (2014)CrossRefGoogle Scholar
  67. 67.
    E. Jäger, L. Segel, SIAM J. Appl. Math. 52(5), 1442 (1992)MathSciNetCrossRefGoogle Scholar
  68. 68.
    N. Bellomo, M. Delitala, Phys. Life Rev. 5, 183 (2008)CrossRefGoogle Scholar
  69. 69.
    R. Erban, H. Othmer, Multiscale Model. Simul. 3(2), 362 (2005)MathSciNetCrossRefGoogle Scholar
  70. 70.
    N. Bellomo, A. Bellouquid, J. Nieto, J. Soler, Math. Models Methods Appl. Sci. 17, 1675 (2007)MathSciNetCrossRefGoogle Scholar
  71. 71.
    M. Kolev, Int. J. Math. Comput. Sci. 13(3), 289 (2003)MathSciNetGoogle Scholar
  72. 72.
    I. Brazzoli, E. Angelis, P.E. Jabin, Math. Models Methods Appl. Sci. 33, 733 (2010)Google Scholar
  73. 73.
    A. Chauviere, I. Brazzoli, Math. Comput. Model. 43, 933 (2006)CrossRefGoogle Scholar
  74. 74.
    N. Bellomo, N. Li, P. Maini, Math. Models Methods Appl. Sci. 18(4), 593 (2008)MathSciNetCrossRefGoogle Scholar
  75. 75.
    R. Eftimie, J. Bramson, D. Earn, Bull. Math. Biol. 73(1), 2 (2011)MathSciNetCrossRefGoogle Scholar
  76. 76.
    R. Magrath, B. Pitcher, J. Gardner, Behav. Ecol. 20(4), 745 (2009)CrossRefGoogle Scholar
  77. 77.
    E.D. Angelis, B. Lods, Math. Comput. Model. 47, 196 (2008)CrossRefGoogle Scholar
  78. 78.
    N. Bellomo, E.D. Angelis, L. Preziosi, J. Theor. Med. 5(2), 111 (2003)CrossRefGoogle Scholar
  79. 79.
    T. Lorenz, C. Surulescu, Math. Models Methods Appl. Sci. 24(12), 2383 (2014)MathSciNetCrossRefGoogle Scholar
  80. 80.
    B. Piccoli, A. Tosin, Arch. Ration. Mech. Anal. 199, 707 (2011)MathSciNetCrossRefGoogle Scholar
  81. 81.
    E. Cristiani, B. Piccoli, A. Tosin, Multiscale Model. Simul. 9(1), 155 (2011)MathSciNetCrossRefGoogle Scholar
  82. 82.
    T. Tao, An Introduction to Measure Theory (American Mathematical Society, 2011)Google Scholar
  83. 83.
    S.Y. Ha, J.G. Liu, Commun. Math. Sci. 7(2), 297 (2009)MathSciNetCrossRefGoogle Scholar
  84. 84.
    J. Carrillo, M. D’Orsogna, V. Panferov, Kinet. Relat. Models 2, 363 (2009)MathSciNetCrossRefGoogle Scholar
  85. 85.
    Y.L. Chuang, M. D’Orsogna, D. Marthaler, A. Bertozzi, L. Chayes, Physica D 232, 33 (2007)MathSciNetCrossRefGoogle Scholar
  86. 86.
    F. Bolley, J. Canizo, J. Carillo, Math. Models Methods Appl. Sci. 21, 2179 (2011)MathSciNetCrossRefGoogle Scholar
  87. 87.
    F. Bolley, J. Canizo, J. Carillo, Appl. Math. Lett. 25, 339 (2012)MathSciNetCrossRefGoogle Scholar
  88. 88.
    M. D’Orsogna, Y. Chuang, A. Bertozzi, L. Chayes, Phys. Rev. Lett. 96(10), 104302 (2006)CrossRefGoogle Scholar
  89. 89.
    J. Irving, J. Kirkwood, J. Chem. Phys. 18, 817 (1950)MathSciNetCrossRefGoogle Scholar
  90. 90.
    P. Degond, S. Motsch, Math. Models Methods Appl. Sci. 20, 1459 (2008)CrossRefGoogle Scholar
  91. 91.
    T. Hillen, Math. Models Methods Appl. Sci. 12(7), 1 (2002)MathSciNetCrossRefGoogle Scholar
  92. 92.
    P. Degond, A. Appert-Rolland, M. Moussaïd, J. Pettré, G. Theraulaz, J. Stat. Phys. 152, 1033 (2013)MathSciNetCrossRefGoogle Scholar
  93. 93.
    F. Filbet, P. Laurencot, B. Perthame, J. Math. Biol. 50(2), 189 (2005)MathSciNetCrossRefGoogle Scholar
  94. 94.
    L. Bonilla, J. Soler, Math. Models Methods Appl. Sci. 11, 1457 (2001)MathSciNetCrossRefGoogle Scholar
  95. 95.
    N. Bellomo, A. Bellouquid, J. Nieto, J. Soler, Math. Comput. Model. 51, 441 (2010)CrossRefGoogle Scholar
  96. 96.
    E.D. Angelis, M. Delitala, A. Marasco, A. Romano, Math. Comput. Model. 37, 1131 (2003)CrossRefGoogle Scholar
  97. 97.
    N. Bellomo, B. Firmani, L. Guerri, Appl. Math. Lett. 12, 39 (1999)MathSciNetCrossRefGoogle Scholar
  98. 98.
    T. Makino, B. Perthame, Jpn. J. Appl. Math. 7, 165 (1990)CrossRefGoogle Scholar
  99. 99.
    T. Hillen, H.G. Othmer, SIAM J. Appl. Math. 61, 751 (2000)MathSciNetCrossRefGoogle Scholar
  100. 100.
    P. Degond, T. Yang, Math. Models Methods Appl. Sci. 20, 1459 (2010)MathSciNetCrossRefGoogle Scholar
  101. 101.
    F. Golse, in Handbook of Differential Equations. Evolutionary Equations, Vol. 2, ed. by C. Dafermos, E. Feireisl (Elsevier B.V., 2005)Google Scholar
  102. 102.
    A.D. Masi, E. Presutti, Mathematical Methods for Hydrodynamic Limits (Springer, Berlin, Heidelberg, 1991)zbMATHCrossRefGoogle Scholar
  103. 103.
    P. Degond, B. Lucquin-Descreux, Math. Model Methods Appl. Sci. 2(2), 167 (1992)CrossRefGoogle Scholar
  104. 104.
    L. Desvillettes, Transp. Theor. Stat. Phys. 21(3), 259 (1992)MathSciNetCrossRefGoogle Scholar
  105. 105.
    S. McNamara, W. Young, Phys. Fluids A 5, 34 (1993)MathSciNetCrossRefGoogle Scholar
  106. 106.
    J. Carrillo, R. Eftimie, F. Hoffmann, Kinet. Relat. Models 8(3), 413 (2015)MathSciNetCrossRefGoogle Scholar
  107. 107.
    P. Degond, S. Motsch, C. R. Acad. Sci. Paris Ser. I 345, 555 (2007)Google Scholar
  108. 108.
    J. Meskas. A nonlocal kinetic model for predator-prey interactions in two dimensions. MSc Thesis, Simon Fraser University, Canada (2012)Google Scholar
  109. 109.
    R. Colombo, M. Lécureux-Mercier, J. Nonlinear Sci. 22, 39 (2012)MathSciNetCrossRefGoogle Scholar
  110. 110.
    P.H. Chavanis, C. Sire, Phys. A Stat. Mech. Appl. 384, 199 (2007)CrossRefGoogle Scholar
  111. 111.
    P.H. Chavanis, Commun. Nonlinear. Sci. Numer. Simul. 15, 60 (2010)MathSciNetCrossRefGoogle Scholar
  112. 112.
    P.H. Chavanis, Phys. A Stat. Mech. Appl. 387, 5716 (2008)MathSciNetCrossRefGoogle Scholar
  113. 113.
    P.H. Chavanis, Phys. A Stat. Mech. Appl. 390(9), 1546 (2011)CrossRefGoogle Scholar
  114. 114.
    A. Schadschneider, D. Chowdhury, K. Nishinari, Stochastic Transport in Complex Systems. From molecules to vehicles (Elsevier, Amsterdam Oxford, 2011)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Raluca Eftimie
    • 1
  1. 1.Division of MathematicsUniversity of DundeeDundeeUK

Personalised recommendations