Advertisement

One-Equation Local Hyperbolic Models

  • Raluca Eftimie
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2232)

Abstract

The first step in the investigation of transport models for aggregation and movement, is represented by the study of one-equation models. To emphasise the complexity of these models, we start with a variety of hyperbolic models for car traffic and pedestrian traffic (since the models for collective movement of pedestrians are a natural extension of the car traffic models, and moreover traffic-like aspects can be found in many biological systems). Next, we discuss models for animal movement that incorporate constant or linear velocity functions. We review also models with reaction terms describing the inflow/outflow of cars and populations. In the context of animal movement, we present in more detail an analytical investigation of the speed of travelling waves. We conclude with a very brief discussion of numerical approaches for advection equations.

References

  1. 1.
    R. Mickens, SIAM Rev. 30(4), 629 (1988)MathSciNetCrossRefGoogle Scholar
  2. 2.
    K. Lika, T. Hallam, J. Math. Biol. 38, 346 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    M. Lighthill, G. Whitham, Proc. R. Soc. Lond. Ser. A. 229(1178), 317 (1955)CrossRefGoogle Scholar
  4. 4.
    D. Helbing, Rev. Mod. Phys. 73, 1067 (2001)CrossRefGoogle Scholar
  5. 5.
    D. Helbing, P. Monar, I. Farkas, K. Bolay, Environ. Plann. B. Plann. Des. 28, 361 (2001)CrossRefGoogle Scholar
  6. 6.
    R. Borsche, A. Meurer, Discret. Contin. Dyn. Syst. Ser. S 7(3), 363 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Göttlich, C. Harter, Netw. Heterog. Media 11(3), 447 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    D. Helbing, F. Schweitzer, J. Keltsch, P. Molnar, Phys. Rev. E 56, 2527 (1997)CrossRefGoogle Scholar
  9. 9.
    I. Prigogine, R. Herman, Kinetic Theory of Vehicular Traffic (Elsevier, New York, 1971)zbMATHGoogle Scholar
  10. 10.
    L. Henderson, Nature 229, 381 (1971)CrossRefGoogle Scholar
  11. 11.
    L. Henderson, Transp. Res. 8, 509 (1975)CrossRefGoogle Scholar
  12. 12.
    R. Colombo, M. Garavello, M. Lécureux-Mercier, Math. Models Methods Appl. Sci. 22(4), 1150023 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    D. Yanagisawa, A. Kimura, R. Nishi, A. Tomoeda, K. Nishinari, Distrib. Auton. Robot. Syst. 8, 227 (2009)CrossRefGoogle Scholar
  14. 14.
    F. Venuti, L. Bruno, Phys. Life Rev. 6(3), 176 (2009)CrossRefGoogle Scholar
  15. 15.
    F. Venuti, L. Bruno, Eng. Struct. 56, 95 (2013)CrossRefGoogle Scholar
  16. 16.
    C. Schäfer, R. Zinke, L. Künzer, G. Hofinger, R. Koch, Transp. Res. Proc. 2, 636 (2014)CrossRefGoogle Scholar
  17. 17.
    A. Sieben, J. Schumann, A. Seyfried, PLoS ONE 12(6), e0177328 (2017)CrossRefGoogle Scholar
  18. 18.
    S. Hoogendoorn, P. Bovy, Transp. Res. Board 1710, 28 (2000)CrossRefGoogle Scholar
  19. 19.
    S. Hoogendoorn, P. Bovy, Proc. Inst. Mech. Eng. Pt. I J. Syst. Control Eng. 215(4), 283 (2001)Google Scholar
  20. 20.
    W. Jin, Transp. Res. B Methodol. 93(A), 543 (2016)CrossRefGoogle Scholar
  21. 21.
    R. Abeyaratne, Int. J. Mech. Eng. Educ. 42(3), 185 (2014)CrossRefGoogle Scholar
  22. 22.
    B. Piccoli, M. Garavello, Traffic Flow on Networks (American Institute of Mathematical Sciences, San Jose, 2006)zbMATHGoogle Scholar
  23. 23.
    D. Helbing, P. Molnar, Phys. Rev. E 51(5), 4282 (1995)CrossRefGoogle Scholar
  24. 24.
    D. Helbing, Complex Syst. 6, 391 (1992)Google Scholar
  25. 25.
    F. Venuti, L. Bruno, N. Bellomo, Math. Comput. Model. 45(3–4), 252 (2007)CrossRefGoogle Scholar
  26. 26.
    N. Bellomo, C. Dogbé, Math. Models Methods Appl. Sci. 18, 1317 (2008)MathSciNetCrossRefGoogle Scholar
  27. 27.
    D. Helbing, A. Hennecke, V. Shvetsov, M. Treiber, Math. Comput. Model. 35(5–6), 517 (2002)CrossRefGoogle Scholar
  28. 28.
    P. Richards, Oper. Res. 4, 42 (1956)CrossRefGoogle Scholar
  29. 29.
    R. Hughes, Transp. Res. B 36, 507 (2002)CrossRefGoogle Scholar
  30. 30.
    R. Hughes, Annu. Rev. Fluid Mech. 35, 169 (2003)CrossRefGoogle Scholar
  31. 31.
    R. Colombo, M. Rosini, Math. Method Appl. Sci. 28(13), 1553 (2005)CrossRefGoogle Scholar
  32. 32.
    D. Helbing, A. Johansson, H.Z. Al-Abideen, Phys. Rev. E 75, 046109 (2007)CrossRefGoogle Scholar
  33. 33.
    C. Appert-Rolland, P. Degond, S. Motch, Netw. Heterog. Media 6(3), 351 (2011)MathSciNetCrossRefGoogle Scholar
  34. 34.
    G. Schütz, Exactly solvable models for many-body systems far from equilibrium, in Phase Transitions and Critical Phenomena, vol. 19 (Academic Press, London, 2001), pp. 1–251Google Scholar
  35. 35.
    P. Lefloch, Hyperbolic Systems of Conservation Laws. The Theory of Classical and Nonclassical Shock Waves. Lectures in Mathematics. ETH Zürich (Birkhäuser, Basel, 2002)Google Scholar
  36. 36.
    R. Colombo, P. Goatin, M. Rosini, GAKUTO Int. Ser. Math. Sci. Appl. 32, 255 (2010)Google Scholar
  37. 37.
    M.D. Francesco, P. Markowich, J.F. Pietschmann, M.T. Wolfram, Math. Models Methods Appl. Sci. 250(3), 1334 (2011)Google Scholar
  38. 38.
    E.D. Angelis, Math. Comput. Model. 29, 83 (1999)CrossRefGoogle Scholar
  39. 39.
    A. Bressan, K. Han, SIAM J. Math. Anal. 43, 2384–2417 (2011)MathSciNetCrossRefGoogle Scholar
  40. 40.
    G. Coclite, B. Piccoli, SIAM J. Math. Anal. 36(6), 1862 (2005)MathSciNetCrossRefGoogle Scholar
  41. 41.
    A. Bressan, K. Han, Netw. Heterog. Media 8, 627 (2013)MathSciNetCrossRefGoogle Scholar
  42. 42.
    M. Herty, S. Moutari, M. Rascale, Netw. Heterog. Media 1(2), 275 (2006)MathSciNetCrossRefGoogle Scholar
  43. 43.
    G. Bretti, R. Natalini, B. Piccoli, Netw. Heterog. Media 1(1), 57 (2006)MathSciNetCrossRefGoogle Scholar
  44. 44.
    A. Bressan, S. Canić, M. Garavello, M. Herty, B. Piccoli, EMS Surv. Math. Sci. 1, 47 (2014)MathSciNetCrossRefGoogle Scholar
  45. 45.
    M. Gugat, M. Herty, A. Klar, G. Leugering, J. Optim. Theory Appl. 126(3), 589 (2005)MathSciNetCrossRefGoogle Scholar
  46. 46.
    D. Helbing, Phys. Rev. E 53, 2366 (1996)MathSciNetCrossRefGoogle Scholar
  47. 47.
    R. LeVeque, Numerical Methods for Conservation Laws (Birkhäuser, Basel, 1992)zbMATHCrossRefGoogle Scholar
  48. 48.
    P. Ross, Transp. Res. 22(6), 421 (1988)CrossRefGoogle Scholar
  49. 49.
    W. Phillips, Transp. Plan. Technol. 5(3), 131 (1979)CrossRefGoogle Scholar
  50. 50.
    M. Flynn, A. Kasimov, J.C. Nave, R. Rosales, B. Seibold, Phys. Rev. E 79(5), 056113 (2009)MathSciNetCrossRefGoogle Scholar
  51. 51.
    R. Kühne, M. Rödiger, Proceedings of the 1991 Winter Simulation Conference (1991), pp. 762–770Google Scholar
  52. 52.
    W. Jin, H. Zhang, Solving the Payne-Whitham traffic flow model as a hyperbolic system of conservation laws with relaxation. Technical report, University of California, Davis, 2001Google Scholar
  53. 53.
    A. Delis, I. Nikolos, M. Papageorgiou, Transp. Res. C.: Emerg. Technol. 44, 318 (2014)CrossRefGoogle Scholar
  54. 54.
    H. Payne, Mathematical Models of Public Systems, vol. 28 (Simulation Council, La Jolla, 1971), pp. 51–61Google Scholar
  55. 55.
    C. Daganzo, Transp. Res. B 28, 35 (1995)Google Scholar
  56. 56.
    A. Aw, M. Rascale, SIAM J. Appl. Math. 60, 916 (2000)MathSciNetCrossRefGoogle Scholar
  57. 57.
    B. Kerner, Math. Comput. Model. 35, 481–508 (2002)CrossRefGoogle Scholar
  58. 58.
    R. Colombo, P. Goatin, Flow Turbul. Combust. 76(4), 383 (2006)CrossRefGoogle Scholar
  59. 59.
    F. Navin, R. Wheeler, Traffic Eng. 39, 31 (1969)Google Scholar
  60. 60.
    L. Vanumu, K. Rao, G. Tiwari, Eur. Transp. Res. Rev. 9, 49 (2017)CrossRefGoogle Scholar
  61. 61.
    R. Colombo, SIAM J. Appl. Math. 63, 708 (2003)CrossRefGoogle Scholar
  62. 62.
    B.S. Kerner, P. Konhäuser, Phys. Rev. E 50, 54 (1994)CrossRefGoogle Scholar
  63. 63.
    B. Kerner, Phys. A: Stat. Mech. Appl. 333, 379 (2004)CrossRefGoogle Scholar
  64. 64.
    B. Kerner, arXiv prerint cond-mat/0309018 (2003)Google Scholar
  65. 65.
    A. Seyfried, B. Steffen, W. Klingsch, M. Boltes, J. Stat. Mech. 2005(10), P10002 (2005)CrossRefGoogle Scholar
  66. 66.
    V. Predtechenskii, A. Milinskii, Planning for Foot Traffic Flow in Buildings (Amerind Publishing, New Delhi, 1978). Translation of: Proekttirovanie Zhdanii s Uchetom Organizatsii Dvizheniya Lyuddskikh Potokov. Stroiizdat Publishers, MoscowGoogle Scholar
  67. 67.
    B. Piccoli, K. Han, T. Friesz, T. Yao, J. Tang, Transp. Res. C 52, 32 (2015)CrossRefGoogle Scholar
  68. 68.
    R. Colombo, P. Goatin, B. Piccoli, J. Hyperbolic Differ. Equ. 7(1), 85 (2010)MathSciNetCrossRefGoogle Scholar
  69. 69.
    M. Garavello, B. Piccoli, Netw. Heterog. Media 4(1), 107 (2009)MathSciNetCrossRefGoogle Scholar
  70. 70.
    S. Blandin, P. Goatin, B. Piccoli, A. Bayen, D. Work, Proc. Soc. Behav. Sci. 54, 302 (2012)CrossRefGoogle Scholar
  71. 71.
    S. Blandin, D. Work, P. Goatin, B. Piccoli, A. Bayen, SIAM J. Appl. Math. 71(1), 107 (2011)MathSciNetCrossRefGoogle Scholar
  72. 72.
    P. Goatin, Math. Comput. Model. 44(3–4), 287 (2006)CrossRefGoogle Scholar
  73. 73.
    D. Helbing, Phys. A 219, 375 (1995)CrossRefGoogle Scholar
  74. 74.
    D. Helbing, in A Perspective Look at Nonlinear Media, ed. by J. Parisi, S. Müller, W. Zimmermann. Lecture Notes in Physics, vol. 503 (Springer, Berlin, 1998), pp. 122–139Google Scholar
  75. 75.
    M. Schönhof, D. Helbing, Transp. Sci. 41(2), 135 (2007)CrossRefGoogle Scholar
  76. 76.
    P. Bagnerini, R. Colombo, A. Corli, Math. Comput. Model. 44(9–10), 917 (2006)CrossRefGoogle Scholar
  77. 77.
    J.P. Lebacque, J.B. Lesort, Proceedings of the 14th International Symposium on Transportation and Traffic Theory, Jerusalem (1999)Google Scholar
  78. 78.
    J.B. Lesort, E. Bourrel, V. Henn, Proceedings of Traffic and Granular Flow?03, Delft (2003), pp. 125–139Google Scholar
  79. 79.
    T. Li, Phys. D: Nonlinear Phenom. 207(1–2), 41 (2005)CrossRefGoogle Scholar
  80. 80.
    H. Yeo, A. Skabardonis, Proceedings of the 18th International Symposium on Transportation and Traffic Theory, Hong-Kong (2009), pp. 99–115Google Scholar
  81. 81.
    K. Hadeler, Reaction transport systems in biological modelling, in Mathematics Inspired by Biology. Lecture Notes in Mathematics (Springer, Berlin, 1999), pp. 95–150Google Scholar
  82. 82.
    A. Kolmogorov, I. Petrovsky, N. Piscounov, Mosc. Univ. Bull. Math. 1, 1 (1937)Google Scholar
  83. 83.
    K. Fellner, G. Raoul, Math. Models Methods Appl. Sci. 20, 2267 (2010)MathSciNetCrossRefGoogle Scholar
  84. 84.
    A. McKendrick, Proc. Edinb. Math. Soc. 44, 98 (1926)CrossRefGoogle Scholar
  85. 85.
    H.V. Foerster, The Kinetics of Cell Proliferation (Grune and Stratton, New York, 1959), pp. 382–407Google Scholar
  86. 86.
    G. Webb, Theory of Nonlinear Age-Dependent Population Dynamics (Marcel Dekker, New York, 1985)zbMATHGoogle Scholar
  87. 87.
    B. Keyfitz, N. Keyfitz, Math. Comput. Model. 26(6), 1–9 (1997)MathSciNetCrossRefGoogle Scholar
  88. 88.
    J.D. Murray, Mathematical Biology (Springer, New York, 1989)zbMATHCrossRefGoogle Scholar
  89. 89.
    A. Volpert, V. Volpert, V. Volpert, Travelling Wave Solutions of Parabolic Systems (American Mathematical Society, Providence, 2000)zbMATHGoogle Scholar
  90. 90.
    V. Volpert, S. Petrovskii, Phys. Life Rev. 6, 267 (2009)CrossRefGoogle Scholar
  91. 91.
    P. Fife, J. Diff. Equ. 40, 168 (1981)CrossRefGoogle Scholar
  92. 92.
    P. Fife, J. McLeod, Arch. Ration. Mech. Anal. 65(4), 335 (1977)MathSciNetCrossRefGoogle Scholar
  93. 93.
    A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem (Oxford University Press, Oxford, 2000)Google Scholar
  94. 94.
    R. LeVeque, Finite Volume Methods for Hyperbolic Problems (Cambridge University Press, Cambridge, 2002)zbMATHCrossRefGoogle Scholar
  95. 95.
    G. Bretti, R. Natalini, B. Piccoli, J. Comput. Appl. Math. 210, 71 (2007)MathSciNetCrossRefGoogle Scholar
  96. 96.
    R. Borsche, J. Kall, J. Comput. Phys. 327, 678 (2016)MathSciNetCrossRefGoogle Scholar
  97. 97.
    Y. Shi, Y. Guo, Appl. Numer. Math. 108, 21 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Raluca Eftimie
    • 1
  1. 1.Division of MathematicsUniversity of DundeeDundeeUK

Personalised recommendations