Advertisement

Introduction

  • Raluca Eftimie
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2232)

Abstract

The modelling and investigation of self-organised biological aggregations is a research area that has undergone rapid expansion over the past years. Self-organised aggregations are found in swarms of insects, schools of fish, flocks of birds, mammal herds, bacteria and even human crowds. The complex spatial and spatial-temporal patterns exhibited by these aggregations, from milling schools of fish and zigzagging flocks of birds, to rippling waves in Myxobacteria colonies, have been the starting point of the research in this area. Various types of mathematical models have been derived to reproduce the observed patterns, and to propose hypotheses about the mathematical and biological mechanisms behind these patterns. Some of these models explicitly include various local and nonlocal communication mechanisms. In this Chapter, we present an overview the research area (while briefly mentioning a few individual-based models that are related to the models which will be discussed throughout the rest of the book), emphasise the reason for our approach on focusing only on two specific classes of models (hyperbolic and kinetic), and summarise the patterns that we will discuss throughout the rest of the chapters.

References

  1. 1.
    J.K. Parrish, L.E. Keshet, Science 284, 99 (1999)CrossRefGoogle Scholar
  2. 2.
    T. Deisboeck, M. Berens, A. Kansal, S. Torquato, Cell Prolif. 34, 115 (2001)CrossRefGoogle Scholar
  3. 3.
    D. Chowdhury, A. Schadschneider, N. Katsuhiro, Phys. Life Rev. 2(4), 318 (2005)CrossRefGoogle Scholar
  4. 4.
    K. Tunstrøm, Y. Katz, C. Ioannou, C. Huepe, M. Lutz, PLoS Comput. Biol. 9, e1002915 (2013)CrossRefGoogle Scholar
  5. 5.
    H. Weimerskirch, F. Bonadonna, F. Bailleul, G. Mabille, G. Dell’Omo, H.P. Lipp, Science 295, 1259 (2002)CrossRefGoogle Scholar
  6. 6.
    M. Muramatsu, T. Nagatani, Phys. A Stat. Mech. Appl. 275(1–2), 281 (2000)CrossRefGoogle Scholar
  7. 7.
    V. Fourcassié, A. Dussutour, J.L. Deneubourg, J. Exp. Biol. 213, 2357 (2010)CrossRefGoogle Scholar
  8. 8.
    O.A. Igoshin, R. Welch, D. Kaiser, G. Oster, Proc. Natl. Acad. Sci. USA 101, 4256 (2004)CrossRefGoogle Scholar
  9. 9.
    S.J. Simpson, A.R. McCaffery, B.F. Hägele, Biol. Rev. 74, 461 (1999)CrossRefGoogle Scholar
  10. 10.
    J.K. Parrish, Environ. Biol. Fish. 55, 157 (1999)CrossRefGoogle Scholar
  11. 11.
    J. Pauls, Fire Technol. 20, 27 (1984)CrossRefGoogle Scholar
  12. 12.
    D. Helbing, Rev. Mod. Phys. 73, 1067 (2001)CrossRefGoogle Scholar
  13. 13.
    D. Helbing, L. Buzna, A. Johansson, T. Wener, Transp. Sci. 39(1), 1 (2005)CrossRefGoogle Scholar
  14. 14.
    N. Shiwakoti, M. Sarvi, Transp. Res. C Emerg. Technol. 37, 260 (2013)CrossRefGoogle Scholar
  15. 15.
    P. Friedl, Y. Hegerfeldt, M. Tusch, Int. J. Dev. Biol. 48, 441 (2004)CrossRefGoogle Scholar
  16. 16.
    P. Røth, Ann. Rev. Cell Dev. Biol. 25, 407 (2009)CrossRefGoogle Scholar
  17. 17.
    P. Maini, H. Othmer (eds.), Mathematical Models for Biological Pattern Formation (Springer, Berlin, 2001)zbMATHGoogle Scholar
  18. 18.
    L. Edelstein-Keshet, Mathematical Models in Biology (SIAM, Philadelphia, 2005)zbMATHCrossRefGoogle Scholar
  19. 19.
    J.D. Murray, Mathematical Biology (Springer, Berlin, 1989)zbMATHCrossRefGoogle Scholar
  20. 20.
    V. Capasso, M. Gromov, A. Hareol-Bellan, N. Morozova, L.L. Pritchard (eds.), Pattern Formation in Morphogenesis (Springer, Berlin, 2013)zbMATHGoogle Scholar
  21. 21.
    C. Guven, E. Rericha, E. Ott, W. Losert, PLoS Comput. Biol. 9(5), e1003041 (2013)CrossRefGoogle Scholar
  22. 22.
    D. Cohen, L. Martignetti, S. Robine, E. Barillot, A. Zinovyev, L. Calzone, PLoS Comput. Biol. 11(11), e1004571 (2015)CrossRefGoogle Scholar
  23. 23.
    S. Chapman, M. Plank, A. James, B. Base, ANZIAM J. 49(2), 151 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    N. Bellomo, M. Delitala, Phys. Life Rev. 5, 183 (2008)CrossRefGoogle Scholar
  25. 25.
    C. Engwer, T. Hillen, M. Knappitsch, C. Surulescu, J. Math. Biol. 71, 551 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    I.D. Couzin, J. Krause, R. James, G. Ruxton, N.R. Franks, J. Theor. Biol. 218, 1 (2002)CrossRefGoogle Scholar
  27. 27.
    K. Warburton, J. Lazarus, J. Theor. Biol. 150, 473 (1991)CrossRefGoogle Scholar
  28. 28.
    T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75(6), 1226 (1995)MathSciNetCrossRefGoogle Scholar
  29. 29.
    A. Huth, C. Wissel, J. Theor. Biol. 156, 365 (1992)CrossRefGoogle Scholar
  30. 30.
    J. Tien, S. levin, D. Rubenstein, Evol. Ecol. 6, 555 (2004)Google Scholar
  31. 31.
    R. Lukeman, Y.X. Li, L. Edelstein-Keshet, Proc. Natl. Acad. Sci. 107(28), 12576 (2010)CrossRefGoogle Scholar
  32. 32.
    U. Börner, A. Deutsch, M. Bär, Phys. Biol. 3, 138 (2006)CrossRefGoogle Scholar
  33. 33.
    M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, V. Zdravkovic, Proc. Natl. Acad. Sci. USA 105(5), 1232 (2008)CrossRefGoogle Scholar
  34. 34.
    R. Eftimie, G. de Vries, M. Lewis, J. Math. Biol. 59, 37 (2009)MathSciNetCrossRefGoogle Scholar
  35. 35.
    D. Trucu, P. Lin, M. Chaplain, Y. Wang, Multiscale Model Simul. 11(1), 309 (2013)MathSciNetCrossRefGoogle Scholar
  36. 36.
    P. Domschke, D. Trucu, A. Gerisch, M. Chaplain, J. Theor. Biol. 361, 41 (2014)CrossRefGoogle Scholar
  37. 37.
    K. Fellner, G. Raoul, Math. Models Methods Appl. Sci. 20, 2267 (2010)MathSciNetCrossRefGoogle Scholar
  38. 38.
    P. Degond, S. Motsch, Math. Models Methods Appl. Sci. 20, 1459 (2008)CrossRefGoogle Scholar
  39. 39.
    K. Fellner, G. Raoul, Math. Comput. Model. 53, 1436 (2011)CrossRefGoogle Scholar
  40. 40.
    R. Fetecau, Math. Models Methods Appl. Sci. 21(7), 1539 (2011)MathSciNetCrossRefGoogle Scholar
  41. 41.
    P. Degond, A. Frouvelle, J.G. Liu, J. Nonlinear Sci. 23, 427 (2013)MathSciNetCrossRefGoogle Scholar
  42. 42.
    J. von Brecht, D. Uminsky, T. Kolokolnikov, A. Bertozzi, Math. Models Methods Appl. Sci. 22(1), 1140002 (2012)MathSciNetCrossRefGoogle Scholar
  43. 43.
    J. Carrillo, M. Fornasier, J. Rosado, G. Toscani, SIAM J. Math. Anal. 42, 218 (2010)MathSciNetCrossRefGoogle Scholar
  44. 44.
    J. Carrillo, M. D’Orsogna, V. Panferov, Kinet. Relat. Models 2, 363 (2009)MathSciNetCrossRefGoogle Scholar
  45. 45.
    H. Reuter, B. Breckling, Ecol. Model. 75–76, 147 (1994)CrossRefGoogle Scholar
  46. 46.
    C.W. Reynolds, Comput. Graph. 21, 25 (1987)CrossRefGoogle Scholar
  47. 47.
    R. Vabø, L. Nøttestad, Fish. Oceanogr. 6, 155 (1997)CrossRefGoogle Scholar
  48. 48.
    U. Börner, A. Deutsch, H. Reichenbach, M. Bär, Phys. Rev. Lett. 89, 078101 (2002)CrossRefGoogle Scholar
  49. 49.
    J. Buhl, D.J.T. Sumpter, I.D. Couzin, J.J. Hale, E. Despland, E.R. Miller, S.J. Simpson, Science 312, 1402 (2006)Google Scholar
  50. 50.
    H. Chaté, F. Ginelli, G. Grégoire, Phys. Rev. Lett. 99, 229601 (2007)CrossRefGoogle Scholar
  51. 51.
    Y.L. Chuang, M. D’Orsogna, D. Marthaler, A. Bertozzi, L. Chayes, Phys. D 232, 33 (2007)MathSciNetCrossRefGoogle Scholar
  52. 52.
    I.D. Couzin, J. Krause, Adv. Study Behav. 32, 1 (2003)CrossRefGoogle Scholar
  53. 53.
    F. Cucker, S. Smale, IEEE Trans. Autom. Control 52(5), 852 (2007)CrossRefGoogle Scholar
  54. 54.
    A. Czirók, A.L. Barabási, T. Vicsek, Phys. Rev. Lett. 82(1), 209 (1999)CrossRefGoogle Scholar
  55. 55.
    V. Gazi, K.M. Passino, Proceedings of the American Control Conference, Anchorage, AK (2002), pp. 8–10Google Scholar
  56. 56.
    G. Grégoire, H. Chaté, Phys. Rev. Lett. 92(2), 025702 (2004)CrossRefGoogle Scholar
  57. 57.
    S. Gueron, S.A. Levin, D.I. Rubenstein, J. Theor. Biol. 182, 85 (1996)CrossRefGoogle Scholar
  58. 58.
    C.K. Hemelrijk, H. Kunz, Behav. Ecol. 16(1), 178 (2004)CrossRefGoogle Scholar
  59. 59.
    D. Stichel, A. Middleton, B. Müller, U. Klingmüller, K. Breuhahn, F. Matthäus, NPJ Syst. Biol. Appl. 3, 5 (2017)CrossRefGoogle Scholar
  60. 60.
    M. D’Orsogna, Y. Chuang, A. Bertozzi, L. Chayes, Phys. Rev. Lett. 96(10), 104302 (2006)CrossRefGoogle Scholar
  61. 61.
    T. Vicsek, A. Zafeiris, Phys. Rep. 517(3–4), 71 (2010)Google Scholar
  62. 62.
    A. Lesne, M. Laguës (eds.), Scale Invariance: From Phase Transitions to Turbulence (Springer, Berlin, 2012)zbMATHGoogle Scholar
  63. 63.
    S.Y. Ha, K. Lee, D. Levy, Commun. Math. Sci. 7(2), 453 (2009)MathSciNetCrossRefGoogle Scholar
  64. 64.
    J. Haskovec, Phys. D 261, 42 (2013)MathSciNetCrossRefGoogle Scholar
  65. 65.
    P.H. Chavanis, C. Sire, Phys. A Stat. Mech. Appl. 384, 199 (2007)CrossRefGoogle Scholar
  66. 66.
    P.H. Chavanis, Phys. A Stat. Mech. Appl. 390(9), 1546 (2011)CrossRefGoogle Scholar
  67. 67.
    C. Zmurchok, G. de Vries, PLoS One 13(6), e0198550 (2018)CrossRefGoogle Scholar
  68. 68.
    R. Eftimie, G. de Vries, M.A. Lewis, F. Lutscher, Bull. Math. Biol. 69(5), 1537 (2007)MathSciNetCrossRefGoogle Scholar
  69. 69.
    R. Eftimie, G. de Vries, M.A. Lewis, Proc. Natl. Acad. Sci. USA 104(17), 6974 (2007)MathSciNetCrossRefGoogle Scholar
  70. 70.
    S. Moon, B. Nabet, N. Leonard, S. Levin, I. Kevrekidis, J. Theor. Biol. 246, 100 (2007)CrossRefGoogle Scholar
  71. 71.
    D. Garcia, L. Brunnet, S.D. Monte, PLoS Comput. Biol. 10(2), e1003482 (2014)CrossRefGoogle Scholar
  72. 72.
    M. Pineda, R. Eftimie, Phys. Biol. 14, 066003 (2017)CrossRefGoogle Scholar
  73. 73.
    E.E. Holmes, Am. Nat. 142, 779 (1993)CrossRefGoogle Scholar
  74. 74.
    T. Hillen, J. Math. Biol. 35, 49 (1996)MathSciNetCrossRefGoogle Scholar
  75. 75.
    R. Eftimie, J. Math. Biol. 65(1), 35 (2012)MathSciNetCrossRefGoogle Scholar
  76. 76.
    A. Chertock, A. Kurganov, A. Polizzi, I. Timofeyev, Math. Models Methods Appl. Sci. 81, 1947 (2003)Google Scholar
  77. 77.
    C. Carmona-Fontaine, E. Theveneau, A. Tzekou, M. Tada, M. Woods, K. Page, M. Parsons, J. Lambris, R. Mayor, Dev. Cell 21, 1026 (2011)CrossRefGoogle Scholar
  78. 78.
    P. Degond, C. Appert-Rolland, M. Moussaïd, J. Pettré, G. Theraulaz, J. Stat. Phys. 152, 1033 (2013)MathSciNetCrossRefGoogle Scholar
  79. 79.
    J. Skellam, Biometrika 38(1–2), 196 (1951)MathSciNetCrossRefGoogle Scholar
  80. 80.
    E. Keller, L. Segel, J. Theor. Biol. 26, 399 (1970)CrossRefGoogle Scholar
  81. 81.
    M. Burger, V. Capasso, D. Morale, Nonlinear Anal. Real World Appl. 8, 939 (2007)MathSciNetCrossRefGoogle Scholar
  82. 82.
    L. Edelstein-Keshet, J. Watmough, D. Grünbaum, J. Math. Biol. 36(6), 515 (1998)MathSciNetCrossRefGoogle Scholar
  83. 83.
    A. Mogilner, L. Edelstein-Keshet, J. Math. Biol. 38, 534 (1999)MathSciNetCrossRefGoogle Scholar
  84. 84.
    A. Mogilner, L. Edelstein-Keshet, J. Math. Biol. 33, 619 (1995)MathSciNetCrossRefGoogle Scholar
  85. 85.
    M.A. Lewis, Theor. Popul. Biol. 45, 277 (1994)CrossRefGoogle Scholar
  86. 86.
    D. Grünbaum, J. Math. Biol. 38, 169 (1999)MathSciNetCrossRefGoogle Scholar
  87. 87.
    H.G. Othmer, S.R. Dunbar, W. Alt, J. Math. Biol. 26, 263 (1988)MathSciNetCrossRefGoogle Scholar
  88. 88.
    N. Bellomo, B. Lods, R. Revelli, L. Ridolfi, Generalised Collocation Methods: Solutions to Nonlinear Problems (Birkhäuser, Boston, 2008)zbMATHCrossRefGoogle Scholar
  89. 89.
    S. Goldstein, Quart. J. Mech. Appl. Math. 4, 129 (1951)MathSciNetCrossRefGoogle Scholar
  90. 90.
    F. Lutscher, A. Stevens, J. Nonlinear Sci. 12, 619 (2002)MathSciNetCrossRefGoogle Scholar
  91. 91.
    N. Bellomo, A. Bellouquid, J. Nieto, J. Soler, Math. Mod. Meth. Appl. Sci. 17, 1675 (2007)CrossRefGoogle Scholar
  92. 92.
    F. Filbet, P. Laurencot, B. Perthame, J. Math. Biol. 50(2), 189 (2005)MathSciNetCrossRefGoogle Scholar
  93. 93.
    T. Hillen, Math. Models Methods Appl. Sci. 12(7), 1 (2002)MathSciNetCrossRefGoogle Scholar
  94. 94.
    D. Helbing, Complex Syst. 6, 391 (1992)Google Scholar
  95. 95.
    T. Yang, J.S. Park, Y. Choi, W. Choi, T.W. Ko, K. Lee, PLoS One 6(6), e20255 (2011)CrossRefGoogle Scholar
  96. 96.
    J. Killeen, H. Thurfjell, S. Ciuti, D. Paton, M. Musiani, M. Boyce, Mov Ecol. 2(1), 15 (2014)CrossRefGoogle Scholar
  97. 97.
    R. Grima, Curr. Top. Dev. Biol. 81, 435 (2008)CrossRefGoogle Scholar
  98. 98.
    P.H. Chavanis, Commun. Nonlinear. Sci. Numer. Simul. 15, 60 (2010)MathSciNetCrossRefGoogle Scholar
  99. 99.
    J. Fozard, H. Byrne, O. Jensen, J. King, Math. Med. Biol. 27, 39 (2010)MathSciNetCrossRefGoogle Scholar
  100. 100.
    H. Levine, W.J. Rappel, I. Cohen, Phys. Rev. E 63, 017101 (2000)CrossRefGoogle Scholar
  101. 101.
    F. Lutscher, Eur. J. Appl. Math. 14, 291 (2003)MathSciNetCrossRefGoogle Scholar
  102. 102.
    T. Hillen, A. Stevens, Nonlinear Anal. Real World Appl. 1, 409 (2000)MathSciNetCrossRefGoogle Scholar
  103. 103.
    B. Pfistner, in Biological Motion, ed. by W. Alt, G. Hoffmann. Lecture Notes on Biomathematics, vol. 89 (Springer, Berlin, 1990), pp. 556–563Google Scholar
  104. 104.
    R. Fetecau, R. Eftimie, J. Math. Biol. 61(4), 545 (2010)MathSciNetCrossRefGoogle Scholar
  105. 105.
    M. Lécureux-Mercier, ESAIM: Proc. 38, 409 (2012)CrossRefGoogle Scholar
  106. 106.
    E. Boissard, P. Degond, S. Motsch, J. Math. Biol. 66(6), 1267 (2013)MathSciNetCrossRefGoogle Scholar
  107. 107.
    R. Eftimie, Modelling group formation and activity patterns in self-organising communities of organisms. Ph.D. Thesis, University of Alberta, 2008Google Scholar
  108. 108.
    R. Mickens, SIAM Rev. 30(4), 629 (1988)MathSciNetCrossRefGoogle Scholar
  109. 109.
    K. Hadeler, Reaction transport systems in biological modelling, in Mathematics Inspired by Biology. Lecture Notes in Mathematics (Springer, Berlin, 1999), pp. 95–150Google Scholar
  110. 110.
    K. Hadeler, Nonlinear propagation in reaction transport systems, in Differential Equations with Applications to Biology (Fields Institute Communications, American Mathematical Society, Providence, 1998), pp. 251–257Google Scholar
  111. 111.
    K. Hadeler, Math. Comput. Model. 31(4–5), 75 (2000)CrossRefGoogle Scholar
  112. 112.
    H. Schwetlick, Ann. Inst. Henri Poincare 17(4), 523 (2000)MathSciNetCrossRefGoogle Scholar
  113. 113.
    K. Lika, T. Hallam, J. Math. Biol. 38, 346 (1999)MathSciNetCrossRefGoogle Scholar
  114. 114.
    K. Hadeler, Proc. Edinburgh Math. Soc. 31, 89 (1988)MathSciNetCrossRefGoogle Scholar
  115. 115.
    T. Hillen, K. Hadeler, Hyperbolic systems and transport equations in mathematical biology, in Analysis and Numerics for Conservation Laws (Springer, Berlin, 2005), pp. 257–279zbMATHCrossRefGoogle Scholar
  116. 116.
    B. Perthame, Appl. Math. 49(6), 539 (2004)MathSciNetCrossRefGoogle Scholar
  117. 117.
    M. Lighthill, G. Whitham, Proc. R. Soc. Lond. Ser. A 229(1178), 317 (1955)CrossRefGoogle Scholar
  118. 118.
    M. Rosini, Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications (Springer, Berlin, 2013)zbMATHCrossRefGoogle Scholar
  119. 119.
    F. Venuti, L. Bruno, N. Bellomo, Math. Comput. Model. 45(3–4), 252 (2007)CrossRefGoogle Scholar
  120. 120.
    D. Helbing, P. Monar, I. Farkas, K. Bolay, Environ. Plann. B Plann. Des. 28, 361 (2001)CrossRefGoogle Scholar
  121. 121.
    D. Helbing, A. Johansson, Encycl. J. Syst. Sci. Complex 16, 6476 (2010)Google Scholar
  122. 122.
    D. Helbing, I. Farkás, P. Molnár, T. Vicsek, in Pedestrian and Evacuation Dynamics, ed. by M. Schreckenberg, S. Sharma (Springer, Berlin, 2002), pp. 21–58Google Scholar
  123. 123.
    P. Torrens, Ann. Assoc. Am. Geograph. 102(1), 35 (2012)CrossRefGoogle Scholar
  124. 124.
    A. Sieben, J. Schumann, A. Seyfried, PLoS One 12(6), e0177328 (2017)CrossRefGoogle Scholar
  125. 125.
    G. Naldi, L. Pareschi, G. Toscani (eds.), Mathematical Modelling of Collective Behaviour in Socio-Economic and Life Sciences (Birkhäuser, Basel, 2010)zbMATHGoogle Scholar
  126. 126.
    G. Marsan, N. Bellomo, A. Tosin, Complex Systems and Society. Modelling and Simulation (Springer, Berlin, 2103)Google Scholar
  127. 127.
    B. Chakrabarti, A. Chakraborti, S. Chakravarty, A. Chatterjee, Econophysics of Income and Wealth Distributions (Cambridge University Press, Cambridge, 2013)CrossRefGoogle Scholar
  128. 128.
    C. Cercignani, E. Gabetta (eds.), Transport Phenomena and Kinetic Theory. Applications to Gases, Semiconductors, Photons, and Biological Systems (Birkhäuser, Boston, 2007)zbMATHGoogle Scholar
  129. 129.
    A. Frouvelle, Math. Models Methods Appl. Sci. 22, 1250011 (2012)MathSciNetCrossRefGoogle Scholar
  130. 130.
    C. Appert-Rolland, P. Degond, S. Motch, Netw. Heterog. Media 6(3), 351 (2011)MathSciNetCrossRefGoogle Scholar
  131. 131.
    A. Frouvelle, J.G. Liu, SIAM. J. Math. Anal. 44(2), 791 (2012)MathSciNetCrossRefGoogle Scholar
  132. 132.
    M. Colangeli, From Kinetic Models to Hydrodynamics. Some Novel Results (Springer, Berlin, 2013)zbMATHCrossRefGoogle Scholar
  133. 133.
    L. Pareschi, G. Russo, G. Toscani, Modelling and Numerics of Kinetic Dissipative Systems (Nova Science Publishers, New York, 2006)zbMATHGoogle Scholar
  134. 134.
    L. Pareschi, G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods (Oxford University Press, Oxford, 2014)zbMATHGoogle Scholar
  135. 135.
    H.G. Othmer, T. Hillen, SIAM J. Appl. Math. 62, 1222 (2002)MathSciNetCrossRefGoogle Scholar
  136. 136.
    T. Hillen, H.G. Othmer, SIAM J. Appl. Math. 61, 751 (2000)MathSciNetCrossRefGoogle Scholar
  137. 137.
    T. Hillen, Canad. Appl. Math. Quart. (CAMQ) 18(1), 1 (2010)Google Scholar
  138. 138.
    A. Bertozzi, T. Laurent, F. Leger, Math. Models Methods Appl. Sci. 22(1), 183 (2012)Google Scholar
  139. 139.
    Y. Huang, A. Bertozzi, Discret. Continuous Dyn. Syst. Ser. B 17, 1309 (2012)CrossRefGoogle Scholar
  140. 140.
    D. Helbing, A. Hennecke, V. Shvetsov, M. Treiber, Math. Comput. Model. 35(5–6), 517 (2002)CrossRefGoogle Scholar
  141. 141.
    D. Helbing, M. Treiber, A. Kesting, M. Schönhof, Eur. Phys. J. B 69(4), 583 (2009)CrossRefGoogle Scholar
  142. 142.
    N. Bellomo, N. Li, P. Maini, Math. Models Methods Appl. Sci. 18(4), 593 (2008)MathSciNetCrossRefGoogle Scholar
  143. 143.
    N. Bellomo, G. Forni, Curr. Top. Dev. Biol. 81, 485 (2008)CrossRefGoogle Scholar
  144. 144.
    J. Laval, C. Daganzo, Transp. Res. B Methodol. 40(3), 251 (2006)CrossRefGoogle Scholar
  145. 145.
    S. Motsch, D. Peurichard, J. Math. Biol. 76, 205 (2018)MathSciNetCrossRefGoogle Scholar
  146. 146.
    P. Degond, L. Pareschi, G. Russo (eds.), Modelling and Computational Methods for Kinetic Equations (Springer Science + Business Media, New York, 2004)Google Scholar
  147. 147.
    V. Vedenyain, A. Sinitsyn, E. Dulov, Kinetic Boltzmann, Vlasov and Related Equations (Elsevier, Amsterdam, 2011)zbMATHGoogle Scholar
  148. 148.
    L. Arlotti, N. Bellomo, E. de Angelis, M. Lachowicz (eds.), Generalized Kinetic Models in Applied Sciences (World Scientific, Singapore, 2003)zbMATHGoogle Scholar
  149. 149.
    A. Bressan, Lecture Notes on Functional Analysis. With Applications to Linear Partial Differential Equations (American Mathematical Society, Providence, 2013)Google Scholar
  150. 150.
    A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem (Oxford University Press, Oxford, 2000)Google Scholar
  151. 151.
    A. Bressan, D. Serre, M. Williams, K. Zumbrun, Hyperbolic Systems of Balance Laws (Springer, Berlin, 2007)Google Scholar
  152. 152.
    C. Cercignani, The Boltzmann Equation and Its Applications (Springer, Berlin, 1987)zbMATHGoogle Scholar
  153. 153.
    N. Bellomo (ed.), Lecture Notes on the Mathematical Theory of Boltzmann Equation (World Scientific, Singapore, 1995)zbMATHGoogle Scholar
  154. 154.
    Y. Sone, Kinetic Theory and Fluid Dynamics (Birkhäuser, Boston, 2002)zbMATHCrossRefGoogle Scholar
  155. 155.
    V. Aristov, Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows (Springer, Berlin, 2001)zbMATHCrossRefGoogle Scholar
  156. 156.
    R. LeVeque, Numerical Methods for Conservation Laws (Birkhäuser, Basel, 1992)zbMATHCrossRefGoogle Scholar
  157. 157.
    P. Degond, L. Pareschi, G. Russo (eds.), Modelling and Computational Methods for Kinetic Equations (Birkhäuser, Boston, 2004)Google Scholar
  158. 158.
    F. Filbet, T. Rey, SIAM J. Sci. Comput. 37(3), A1218 (2015)CrossRefGoogle Scholar
  159. 159.
    S. Cordier, T. Goudon, M. Gutnic, E. Sonnendrücker (eds.), Numerical Methods for Hyperbolic and Kinetic Problems (European Mathematical Society, Zürich, 2005)Google Scholar
  160. 160.
    C.W. Shu, in High-Order Methods for Computational Physics, ed. by T. Barth, H. Deconinck, vol. 9 (Springer, Berlin, 1999), pp. 439–582Google Scholar
  161. 161.
    M. Haragus, G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems (Springer, Berlin, 2010)zbMATHGoogle Scholar
  162. 162.
    M. Golubitsky, I. Stewart, D.G. Schaeffer, Singularities and Groups in Bifurcation Theory. Volume II (Springer, New York, 1988)Google Scholar
  163. 163.
    M. Golubitsky, I. Stewart, The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space (Birkhäuser, Basel, 2002)Google Scholar
  164. 164.
    R. Hoyle, Pattern Formation. An Introduction to Methods (Cambridge University Press, Cambridge, 2006)Google Scholar
  165. 165.
    N. Bellomo, E.D. Angelis, L. Preziosi, J. Theor. Med. 5(2), 111 (2003)CrossRefGoogle Scholar
  166. 166.
    E. Codling, M. Plank, S. Benhamou, J. R. Soc. Interface 5(25), 813 (2008)CrossRefGoogle Scholar
  167. 167.
    B. Piccoli, M. Garavello, Traffic Flow on Networks (American Institute of Mathematical Sciences, Springfield, 2006)Google Scholar
  168. 168.
    N. Bellomo, C. Dogbé, SIAM Rev. 53, 409 (2011)MathSciNetCrossRefGoogle Scholar
  169. 169.
    B. Kerner, Introduction to Modern Traffic Flow Theory and Control (Springer, Berlin, 2009)zbMATHCrossRefGoogle Scholar
  170. 170.
    M. Treiber, A. Kesting, Traffic Flow Dynamics (Springer, Berlin, 2013)zbMATHCrossRefGoogle Scholar
  171. 171.
    I. Prigogine, R. Herman, Kinetic Theory of Vehicular Traffic (Elsevier, New York, 1971)zbMATHGoogle Scholar
  172. 172.
    A. Bellouquid, M. Delitala, Mathematical Modelling of Complex Biological Systems. A Kinetic Theory Approach (Birkhäuser, Boston, 2006)Google Scholar
  173. 173.
    Y. Kuznetsov, Elements of Applied Bifurcation Theory, 2nd edn. (Springer, Berlin, 2000)Google Scholar
  174. 174.
    E. Geigant, K. Ladizhansky, A. Mogilner, SIAM J. Appl. Math. 59(3), 787 (1998)CrossRefGoogle Scholar
  175. 175.
    P.L. Buono, R. Eftimie, Math. Models Methods Appl. Sci. 24(2), 327–357 (2014)MathSciNetCrossRefGoogle Scholar
  176. 176.
    R. Eftimie, Math. Model Nat. Phenom. 8(6), 5 (2013)MathSciNetCrossRefGoogle Scholar
  177. 177.
    A. Leverentz, C. Topaz, A. Bernoff, SIAM J. Appl. Dyn. Syst. 8(3), 880 (2009)MathSciNetCrossRefGoogle Scholar
  178. 178.
    N. Vauchelet, Kinet. Relat. Models 3(3), 501 (2010)MathSciNetCrossRefGoogle Scholar
  179. 179.
    H. Hasimoto, Proc. Jpn. Acad. Ser. A Math. Sci. 50, 623 (1974)Google Scholar
  180. 180.
    T. Hillen, H. Levine, Z. Angew. Math. Phys. 54, 1 (2003)Google Scholar
  181. 181.
    R. Eftimie, J. Theor. Biol. 337, 42 (2013)MathSciNetCrossRefGoogle Scholar
  182. 182.
    C.M. Topaz, A.L. Bertozzi, SIAM J. Appl. Math. 65, 152 (2004)MathSciNetCrossRefGoogle Scholar
  183. 183.
    A. Bressan, Hyperbolic Conservation Laws: An Illustrated Tutorial (Springer, Berlin, 2013), pp. 157–245Google Scholar
  184. 184.
    R. Colombo, M. Garavello, M. Lécureux-Mercier, Math. Models Methods Appl. Sci. 22(4), 1150023 (2012)MathSciNetCrossRefGoogle Scholar
  185. 185.
    F. Golse, in Handbook of Differential Equations. Evolutionary Equations, ed. by C. Dafermos, E. Feireisl, vol. 2 (Elsevier B.V., Amsterdam, 2005)Google Scholar
  186. 186.
    S.Y. Ha, E. Tadmor, Kinet. Rel. Models 1(3), 415 (2008)CrossRefGoogle Scholar
  187. 187.
    S. Harris, An Introduction to the Theory of the Boltzmann Equation (Courier Corporation, Chelmsford, 2012)Google Scholar
  188. 188.
    B. Lapeyre, E. Pardoux, R. Sentis, Introduction to Monte-Carlo Methods for Transport and Diffusion Equations (Oxford University Press, Oxford, 2003)zbMATHGoogle Scholar
  189. 189.
    A. Schadschneider, D. Chowdhury, K. Nishinari, Stochastic Transport in Complex Systems. From Molecules to Vehicles (Elsevier, Amsterdam, 2011)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Raluca Eftimie
    • 1
  1. 1.Division of MathematicsUniversity of DundeeDundeeUK

Personalised recommendations