Energy-Maximizing Control for Ocean Energy Converter

  • Taofeek Orekan
  • Peng Zhang
Part of the SpringerBriefs in Energy book series (BRIEFSENERGY)


This chapter presents two control methods, MPEC for maximum power extraction of Smart-WEC and MLCT for life cycle extension of tidal energy converter. The results show that MPEC significantly increase power extraction by the Smart-WEC. Also, in order to eliminate speed sensor in the MLCT technique, an artificial neural network is adopted to estimate the tidal speed.


  1. 1.
    H. Mendonca, S. Martinez, A resistance emulation approach to optimize the wave energy harvesting for a direct drive point absorber. IEEE Trans. Sustainable Energy 7(1), 3–11 (2016)CrossRefGoogle Scholar
  2. 2.
    X. Xiao, X. Huang, Q. Kang, A hill-climbing-method-based maximum-power-point-tracking strategy for direct-drive wave energy converters. IEEE Trans. Ind. Electron. 63(1), 257–267 (2016)CrossRefGoogle Scholar
  3. 3.
    J.S. Park, B.G. Gu, J.R. Kim, I.H. Cho, I. Jeong, J. Lee, Active phase control for maximum power point tracking of a linear wave generator. IEEE Trans. Power Electron. 32(10), 7651–7662 (2017)CrossRefGoogle Scholar
  4. 4.
    P. Ricci, J. Lopez, M. Santos, P. Ruiz-Minguela, J.L. Villate, F. Salcedo, A.F.d. Falcao, Control strategies for a wave energy converter connected to a hydraulic power take-off. IET Renew. Power Gener. 5(3), 234–244 (2011)CrossRefGoogle Scholar
  5. 5.
    V.J. Antonio, A.D. Montoya, G.S. Agustín, Increasing the efficiency of the passive loading strategy for wave energy conversion. J. Renew. Sustainable Energy 5(5), 053132 (2013)Google Scholar
  6. 6.
    D.E.A.M. Andrade, A. de la Villa Jaén, A.G. Santana, Improvements in the reactive control and latching control strategies under maximum excursion constraints using short-time forecast. IEEE Trans. Sustainable Energy 7(1), 427–435 (2016)CrossRefGoogle Scholar
  7. 7.
    Z. Feng, E.C. Kerrigan, Latchingdeclutching control of wave energy converters using derivative-free optimization. IEEE Trans. Sustainable Energy 6(3), 773–780 (2015)CrossRefGoogle Scholar
  8. 8.
    F. Fusco, J.V. Ringwood, A simple and effective real-time controller for wave energy converters. IEEE Trans. Sustainable Energy 4(1), 21–30 (2015)CrossRefGoogle Scholar
  9. 9.
    N. Tom, R.W. Yeung, Experimental confirmation of nonlinear-model-predictive control applied offline to a permanent magnet linear generator for ocean-wave energy conversion. IEEE J. Ocean. Eng. 41(2), 281–295 (2016)CrossRefGoogle Scholar
  10. 10.
    M.C. Sousounis, J.K.H. Shek, M.A. Mueller, Modelling, control and frequency domain analysis of a tidal current conversion system with onshore converters. IET Renew. Power Gener. 10(2), 158–165 (2016)CrossRefGoogle Scholar
  11. 11.
    A. de la Villa-Jaén, D.E. Montoya-Andrade, A. García-Santana, Control strategies for point absorbers considering linear generator copper losses and maximum excursion constraints. IEEE Trans. Sustainable Energy 9(1), 433–442 (2018)CrossRefGoogle Scholar
  12. 12.
    L. Ran, M.A. Mueller, C. Ng, P.J. Tavner, H. Zhao, N.J. Baker, S. Mcdonald, P. Mckeever, Power conversion and control for a linear direct drive permanent magnet generator for wave energy. IET Renew. Power Gener. 5(1), 1–9 (2011)CrossRefGoogle Scholar
  13. 13.
    P. Brooking, M. Mueller, Power conditioning of the output from a linear vernier hybrid permanent magnet generator for use in direct drive wave energy converters. IEEE Proc. Gener. Transm. Distrib. 152, 673–681 (2005)CrossRefGoogle Scholar
  14. 14.
    P.C.J. Clifton, R.A. McMahon, H.-P. Kelly, Design and commissioning of a 30 kw direct drive wave generator, in IET Conference on Power Electronics, Machines and Drives, Brighton, UK, Apr. 2010Google Scholar
  15. 15.
    M. Preindl, E. Schaltz, Sensorless model predictive direct current control using novel second-order PLL observer for PMSM drive systems. IEEE Trans. Ind. Electron. 58(9), 4087–4095 (2011)CrossRefGoogle Scholar
  16. 16.
    R. Vermaak, M.J. Kamper, Experimental evaluation and predictive control of an air-cored linear generator for direct-drive wave energy converters. IEEE Trans. Ind. Appl. 48(6), 1817–1826 (2012)CrossRefGoogle Scholar
  17. 17.
    T. Orekan, Z. Zhao, P. Zhang, J. Zhang, S. Zhou, J. Cui, Maximum lifecycle tracking for tidal energy generation system. Electr. Power Compon. Syst. 43, 8–10 (2015)CrossRefGoogle Scholar
  18. 18.
    M. Jackson, S. Umans, R. Dunlop, S. Horowitz, A. Parikh, Turbine-generator shaft torques and fatigue: Part I - simulation methods and fatigue analysis. IEEE Trans. Power Apparatus Syst. 98(6), 2299–2307 (1979)CrossRefGoogle Scholar
  19. 19.
    A. Secil, Fatigue life calculation by rainflow cycle counting method, Master’s thesis, Middle East Technical University, Ankara, Turkey, 2004Google Scholar
  20. 20.
    A. Mullane, G. Bryans, M. O’Malley, Kinetic energy and frequency response comparison for renewable generation systems, in 2005 International Conference on Future Power Systems (2005)Google Scholar
  21. 21.
    S.B. Elghali, R. Balme, K.L. Saux, M. Benbouzid, J. Charpentier, F. Hauville, A simulation model for the evaluation of the electrical power potential harnessed by a marine current turbine. IEEE J. Ocean. Eng. 32(4), 786–797 (2008)CrossRefGoogle Scholar
  22. 22.
    M.H. Beale, M.T. Hagan, H.B. Demuth, Tech. Rep., 2014. Available:
  23. 23.
    S. Bifaretti, P. Zanchetta, F. Iov, J. Clare, Predictive current control of a 7-level ac-dc back-to-back converter for universal and flexible power management system, in Power Electronics and Motion Control Conference, 2008. EPE-PEMC 2008. 13th (2008)Google Scholar
  24. 24.
    L. Kan, Z. Zhu, Online estimation of the rotor flux linkage and voltage-source inverter nonlinearity in permanent magnet synchronous machine drives. IEEE Trans. Power Electron. 29(1), 418–427 (2014)CrossRefGoogle Scholar
  25. 25.
    J. Belanger, P. Venne, J. Paquin, The what, where and why of real-time simulation, in in Planet RT (2010)Google Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG, part of Springer Nature 2019

Authors and Affiliations

  • Taofeek Orekan
    • 1
  • Peng Zhang
    • 1
  1. 1.Electrical and Computer EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations