Study and Analysis of Underwater Wireless Power Transfer

  • Taofeek Orekan
  • Peng Zhang
Part of the SpringerBriefs in Energy book series (BRIEFSENERGY)


A detailed study of the UWPT system is presented in this chapter. Since the properties of the coils also contribute to the overall efficiency of the system, we studied the self-inductance, capacitance, and radiation resistance of the coil underwater. The findings show the practicality of transferring power wirelessly in ocean environment which could help reduce the need for oversized batteries in distributed ocean systems and make a profound impact on the advancement of underwater devices.


  1. 1.
    Witricity [Online],
  2. 2.
    Qualcomm/haloipt [Online],
  3. 3.
    J.M. Miller, O.C. Onar, M. Chinthavali, Primary-side power flow control of wireless power transfer for electric vehicle charging. IEEE J. Emerg. Sel. Top. Power Electron. 3(1), 147–162 (2015)CrossRefGoogle Scholar
  4. 4.
    S.Y.R. Hui, W. Zhong, C.K. Lee, A critical review of recent progress in mid-range wireless power transfer. IEEE Trans. Power Electron. 29(9), 4500–4511 (2014)CrossRefGoogle Scholar
  5. 5.
    T.M. Hayslett, T. Orekan, P. Zhang, Underwater wireless power transfer for ocean system applications, in OCEANS 2016 MTS/IEEE Monterey (2016)Google Scholar
  6. 6.
    R.S. McEwen, B.W. Hobson, L. McBride, Docking control system for a 54-cm-diameter (21-in) AUV. IEEE J. Ocean. Eng. 33(4), 550–562 (2008)CrossRefGoogle Scholar
  7. 7.
    R. Stokey, B. Allen, T. Austin, Enabling technologies for REMUS docking: an integral component of an autonomous ocean-sampling network. IEEE J. Ocean. Eng. 26(4), 487–497 (2001)CrossRefGoogle Scholar
  8. 8.
    K. Teo, E. An, P.J. Beaujean, A robust fuzzy autonomous underwater vehicle (AUV) docking approach for unknown current disturbances. IEEE J. Ocean. Eng. 37(2), 143–155 (2012)CrossRefGoogle Scholar
  9. 9.
    W. Zhong, S.Y.R. Hui, Maximum energy efficiency tracking for wireless power transfer systems. IEEE Trans. Power Electron. 30(7), 4025–4034 (2015)CrossRefGoogle Scholar
  10. 10.
    A.P. Sample, D. Meyer, J.R. Smith, Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron. 58(2), 544–554 (2011)CrossRefGoogle Scholar
  11. 11.
    N.Y. Kim, K.Y. Kim, J. Choi, C.W. Kim, Adaptive frequency with power-level tracking system for efficient magnetic resonance wireless power transfer. Electron. Lett. 48(8), 452–454 (2012)CrossRefGoogle Scholar
  12. 12.
    B.H. Waters, A.P. Sample, P. Bonde, J.R. Smith, Powering a ventricular assist device (VAD) with the free-range resonant electrical energy delivery (FREE-D) system. Proc. IEEE 100(1), 138–149 (2012)CrossRefGoogle Scholar
  13. 13.
    Z. Pantic, K. Lee, S.M. Lukic, Receivers for multifrequency wireless power transfer: design for minimum interference. IEEE J. Emerg. Sel. Top. Power Electron. 3(1), 234–241 (2015)CrossRefGoogle Scholar
  14. 14.
    J. Park, Y. Tak, Y. Kim, Y. Kim, S. Nam, Investigation of adaptive impedance matching methods for near-field wireless power transfer. IEEE Trans. Antennas Propag. 59(5), 1769–1773 (2011)CrossRefGoogle Scholar
  15. 15.
    L. Huang, A.P. Hu, A.K. Swain, Y. Su, Z-impedance compensation for wireless power transfer based on electric field. IEEE Trans. Power Electron. 31(11), 7556–7563 (2016)CrossRefGoogle Scholar
  16. 16.
    T.C. Beh, T. Imura, M. Kato, Y. Hori, Basic study of improving efficiency of wireless power transfer via magnetic resonance coupling based on impedance matching, in IEEE International Symposium on Industrial Electronics, 7 July 2010Google Scholar
  17. 17.
    F. Zhang, S.A. Hackworth, W. Fu, C. Li, Z. Mao, M. Sun, Relay effect of wireless power transfer using strongly coupled magnetic resonances. IEEE Trans. Magn. 47(5), 1478–1481 (2011)CrossRefGoogle Scholar
  18. 18.
    D. Ahn, S. Hong, A study on magnetic field repeater in wireless power transfer. IEEE Trans. Ind. Electron. 60(1), 360–371, (2013)CrossRefGoogle Scholar
  19. 19.
    M.J. Chabalko, J. Besnoff, D.S. Ricketts, Magnetic field enhancement in wireless power with metamaterials and magnetic resonant couplers. IEEE Antennas Wirel. Propag. Lett. 15, 452–455 (2015)CrossRefGoogle Scholar
  20. 20.
    E.S. Rodríguez, A.K. RamRakhyani, D. Schurig, Compact low-frequency metamaterial design for wireless power transfer efficiency enhancement. IEEE Trans. Microw. Theory Tech. 64(5), 1644–1654 (2016)CrossRefGoogle Scholar
  21. 21.
    T. Orekan, P. Zhang, C. Shih, Analysis, design and maximum power efficiency tracking for undersea wireless power transfer. IEEE J. Emerg. Sel. Top. Power Electron. 6(2), 843–854 (2017)CrossRefGoogle Scholar
  22. 22.
    J. Huh, S.W. Lee, W.Y. Lee, G.H. Cho, C.T. Rim, Narrow-width inductive power transfer system for online electrical vehicles. IEEE Trans. Power Electron. 26(12), 3666–3679 (2011)CrossRefGoogle Scholar
  23. 23.
    C. Fang, J. Song, L. Lin, Y. Wang, Practical considerations of series-series and series-parallel compensation topologies in wireless power transfer system application, in 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW) (2017), pp. 255–259Google Scholar
  24. 24.
    S. Wang, J. Chen, Z. Hu, C. Rong, M. Liu, Optimisation design for series-series dynamic WPT system maintaining stable transfer power. IET Power Electron. 10(9), 987–995 (2017)CrossRefGoogle Scholar
  25. 25.
    Y. Wang, Y. Yao, X. Liu, D. Xu, L. Cai, An LC/S compensation topology and coil design technique for wireless power transfer. IEEE Trans. Power Electron. 33(3), 2007–2025 (2018)CrossRefGoogle Scholar
  26. 26.
    M. Ishihara, K. Umetani, H. Umegami, E.Hiraki, M. Yamamoto, Quasi-duality between SS and SP topologies of basic electric-field coupling wireless power transfer system. Electron. Lett. 52(25), 2057–2059 (2016)CrossRefGoogle Scholar
  27. 27.
    T. Campi, S. Cruciani, F. Maradei, M. Feliziani, Near-field reduction in a wireless power transfer system using LCC compensation. IEEE Trans. Electromagn. Compat. 59(2), 686–694 (2017)CrossRefGoogle Scholar
  28. 28.
    K. Iizuka, R. King, C. Harrison, Self- and mutual admittances of two identical circular loop antennas in a conducting medium and in air. IEEE Trans. Antennas Propag. 14(4), 440–450 (1966)CrossRefGoogle Scholar
  29. 29.
    A. Jenkins, V. Bana, G. Anderson, Impedance of a coil in seawater, in IEEE Antennas and Propagation Society International Symposium (APSURSI) (2014)Google Scholar
  30. 30.
    M.B. Kraichman, Impedance of a circular loop antenna in a infinite conducting medium. J. Res. Natl. Bur. Stand. Radio Propag. 66D(4), 499–503 (1962)CrossRefGoogle Scholar
  31. 31.
    J.R. Wait, Insulated loop antenna immersed in a conducting medium. J. Res. Natl. Bur. Stand. 59(2), 133–137 (1957)CrossRefGoogle Scholar
  32. 32.
    S. Babic, F. Sirois, C. Akyel, C. Girardi, Mutual inductance calculation between circular filaments arbitrarily positioned in space: alternative to grover’s formula. IEEE Trans. Magn. 46(9), 3591–3600 (2010)CrossRefGoogle Scholar
  33. 33.
    C. Zhang, W. Zhong, X. Liu, S.Y.R. Hui, A fast method for generating time-varying magnetic field patterns of mid-range wireless power transfer systems. IEEE Trans. Power Electron. 30(3), 1513–1520 (2015)CrossRefGoogle Scholar
  34. 34.
    P. Hadadtehrani, P. Kamalinejad, R. Molavi, S. Mirabbasi, On the use of conical helix inductors in wireless power transfer systems, in IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) (2016)Google Scholar
  35. 35.
    X. Shi, C. Qi, M. Qu, S. Ye, G. Wang, L. Sun, Z. Yu, Effects of coil shapes on wireless power transfer via magnetic resonance coupling. J. Electromagn. Waves Appl. 28(11), 1316–1324 (2014)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG, part of Springer Nature 2019

Authors and Affiliations

  • Taofeek Orekan
    • 1
  • Peng Zhang
    • 1
  1. 1.Electrical and Computer EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations