Overview of the Smart Ocean Energy Converter

  • Taofeek Orekan
  • Peng Zhang
Part of the SpringerBriefs in Energy book series (BRIEFSENERGY)


In this chapter, an overview of ocean energy (wave and tidal) converter is presented. The basic concepts and technical challenges hindering the advancement of these technologies are summarized. Smart-WEC, a new type of wave energy converter, with a unique underwater wireless power transfer system is introduced.


  1. 1.
    J. Raja, L.C. Videira, B. Pierre, Battery lifetime estimation and optimization for underwater sensor networks. IEEE Sensor Netw. Oper. 2006, 397–420 (2004)Google Scholar
  2. 2.
    M. Annette, J.G. Vining, Ocean wave energy conversion-a survey, in Industry Applications Conference, 41st IAS Annual Meeting, vol. 3 (2006), pp. 1410–1417Google Scholar
  3. 3.
    J. Lehmkoster, T. Schroder, D. Ladischensky, Marine minerals and energy. Tech. Rep. 2010 [Online].
  4. 4.
    E. Siirila, Un atlas: 44 percent of us live in coastal areas [Online].
  5. 5.
    C. João, S. Rebecca, S. Philip, T.R. Eatock, Estimating the loads and energy yield of arrays of wave energy converters under realistic seas. IET Renew. Power Gen. 4(6), 488 (2010)Google Scholar
  6. 6.
    Z. Peng, W. Yang, X. Weidong, L. Wenyuan, Reliability evaluation of grid-connected photovoltaic power systems. IEEE Trans. Sustain. Energy 3(3), 379–389 (2012)CrossRefGoogle Scholar
  7. 7.
    W. Yang, Z. Peng, L. Wenyuan, K. Nadim, Comparative analysis of the reliability of grid-connected photovoltaic power systems, in IEEE Power and Energy Society General Meeting, San Diego (2012), pp. 1–8Google Scholar
  8. 8.
    J. Zhang, X. Xiao, P. Zhang, J. Lu, T. Orekan, Subsynchronous control interaction analysis and a trigger-based active damping control for dfig-based wind turbines. Electr. Power Compon. Syst. 44(7), 713–725 (2016)CrossRefGoogle Scholar
  9. 9.
    D. Benjamin, A.R. Plummer, S.M. Necip, A review of wave energy converter technology. Proc. Inst. Mech. Eng. A J. Power Energy 223(8), 887–902 (2009)CrossRefGoogle Scholar
  10. 10.
    H. Titah-Benbouzid, M. Benbouzid, Development and demonstration of the WEC-sim wave energy converter simulation tool, in Proceedings of the 2nd Marine Energy Technology Symposium, Shanghai, China (2014)Google Scholar
  11. 11.
    H. Titah-Benbouzid, M. Benbouzid, An up-to-date technologies review and evaluation of wave energy converters. Int. Rev. Electr. Eeng. IREE 10(1), 52–61 (2015)CrossRefGoogle Scholar
  12. 12.
    P. Holmberg, M. Andersson, B. Bolund, Kerstinand, T. Schroder, D. Ladischensky, Wave power surveillance study of the development. Tech. Rep. 2011 [Online]. Accessed 10 June 2018
  13. 13.
    NREL.GOV, New wave energy converter design inspired by wind energy. Tech. Rep., 2018 [Online]. Accessed 7 Sept. 2018
  14. 14.
    P.B. Garcia-Rosa, J.P.V.S. Cunha, F. Lizarralde, S.F. Estefen, I.R. Machado, E.H. Watanabe, Wave-to-wire model and energy storage analysis of an ocean wave energy hyperbaric converter. IEEE J. Ocean. Eng. 39(2), 1817–1828 (2014)CrossRefGoogle Scholar
  15. 15.
    P.C.J. Clifton, A. McMahon, H.P. Kelly, Design and commissioning of a 30kw direct drive wave generator, in IET Conference on Power Electronics, Machines and Drives (PEMD), Brighton, UK (2010)Google Scholar
  16. 16.
    L. Cappelli, F. Marignetti, G. Mattiazzo, E. Giorcelli, G. Bracco, S. Carbone, C. Attaianese, Linear tubular permanent-magnet generators for the inertial sea wave energy converter. IEEE Trans. Ind. Appl. 50(3), 1817–1828 (2014)CrossRefGoogle Scholar
  17. 17.
    D.E.A.M. Andrade, A. de la Villa Jaén, A.G. Santana, Improvements in the reactive control and latching control strategies under maximum excursion constraints using short-time forecast. IEEE Trans. Sustain. Energy 7(1), 427–435 (2016)CrossRefGoogle Scholar
  18. 18.
    Z. Feng, E.C. Kerrigan, Latchingdeclutching control of wave energy converters using derivative-free optimization. IEEE Trans. Sustain. Energy 6(3), 773–780 (2015)CrossRefGoogle Scholar
  19. 19.
    F. Fusco, J.V. Ringwood, A simple and effective real-time controller for wave energy converters. IEEE Trans. Sustain. Energy 4, (1), 21–30 (2015)CrossRefGoogle Scholar
  20. 20.
    M. Rowell, Experimental evaluation of mixer ejector hydrokinetc turbine (MEHT) at two tidal energy test sites and in a tow tank. Tech. Rep. 2013 [Online].
  21. 21.
    M. Shahsavarifard, Effect of shroud on performance of horizontal axis hydrokinetic turbine. Tech. Rep. 2013 [Online].
  22. 22.
    Y. Zhao, X. Su, Tidal energy: technologies and recent developments, in IEEE International Energy Conference and Exhibition (EnergyCon) (2013), pp. 618–623Google Scholar
  23. 23.
    W. Huai, M. Liserre, F. Blaabjerg, R.D. Place, J. Jacobsen, T. Kvisgaard, J. Landkildehus, Transitioning to physics-of-failure as a reliability driver in power electronics. IEEE J. Emerg. Sel. Topics Power Electron. 2(1), 97–114 (2014)CrossRefGoogle Scholar
  24. 24.
    S. Benelghali, M.E.H. Benbouzid, J. Charpentier, T. Ahmed-Ali, I. Munteanu, Experimental validation of a marine current turbine simulator: application to a permanent magnet synchronous generator-based system second-order sliding mode control. IEEE Trans. Ind. Electron. 58(1), 118–126 (2011)CrossRefGoogle Scholar
  25. 25.
    K. Sean, Failed tidal turbine explained at symposium [Online].
  26. 26.
    D.N. Walker, S.L. Adams, R.J. Placek, Torsional vibration and fatigue of turbine-generator shafts. IEEE Trans. Power Apparatus Syst. 58(11), 4373–4380 (1981)CrossRefGoogle Scholar
  27. 27.
    M. Jackson, S. Umans, R. Dunlop, S. Horowitz, A. Parikh, Turbine-generator shaft torques and fatigue: Part I - simulation methods and fatigue analysis. IEEE Trans. Power Apparatus Syst. 98(6), 2299–2307 (1979)CrossRefGoogle Scholar
  28. 28.
    T. Hammons, Accumulative fatigue life expenditure of turbine/generator shafts following worst-case system disturbances. IEEE Trans. Power Apparatus Syst. 101(7): 2364–2374 (1982)CrossRefGoogle Scholar
  29. 29.
    J. Song-Manguelle, S. Schroder, T. Geyer, G. Ekemb, J. Nyobe-Yome, Prediction of mechanical shaft failures due to pulsating torques of variable-frequency drives. IEEE Trans. Ind. Appl. 46(5), 979–1988 (2010)CrossRefGoogle Scholar
  30. 30.
    C. Iliev, V. Val, Tidal current turbine reliability: power take-off train models and evaluation, in 3rd International Conference on Ocean Energy (2010)Google Scholar
  31. 31.
    D.A. Douglas, T. Brekken, Monte carlo analysis of the impacts of high renewable power penetration, in IEEE Energy Conversion Congress and Exposition (ECCE) (2011), pp. 3059–3066Google Scholar
  32. 32.
    J. Song-Manguelle, S. Schröder, T. Geyer, G. Ekemb, J.-M. Nyobe-Yome, Prediction of mechanical shaft failures due to pulsating torques of variable-frequency drives. IEEE Trans. Ind. Appl. 46(5), 1979–1988 (2010)CrossRefGoogle Scholar
  33. 33.
    A. Secil, Fatigue life calculation by rainflow cycle counting method. Master’s thesis, Middle East Technical University, Ankara, Turkey, 2004Google Scholar
  34. 34.
    D.N. Walker, S.L. Adams, R.J. Placek, Torsional vibration and fatigue of turbine-generator shafts. IEEE Trans. Power Apparatus Syst. PAS-100(11), 4373–4380 (1981)CrossRefGoogle Scholar
  35. 35.
    C. Iliev, D. Val, Tidal current turbine reliability: power take-off train models and evaluation, in Proceedings of 3rd International Conference on Ocean Energy, Bilbao (2010)Google Scholar
  36. 36.
    S. Adhikari, L. Fangxing, Coordinated v-f and p-q control of solar photovoltaic generators with mppt and battery storage in microgrids. IEEE Trans. Smart Grid 5(3), 1270–1281 (2014)CrossRefGoogle Scholar
  37. 37.
    M. Pucci, M. Cirrincione, Neural MPPT control of wind generators with induction machines without speed sensors. IEEE Trans. Ind. Electron. 58(1), 37–47 (2010)CrossRefGoogle Scholar
  38. 38.
    A. Brecher, D. Arthur, Review and evaluation of wireless power transfer (WPT) for electric transit applications. Tech. Rep. 2014 [Online].
  39. 39.
    W.C. Brown, The history of power transmission by radio waves. IEEE Trans. Microw. Theory Tech. 32(9), 1230–1242 (1984)CrossRefGoogle Scholar
  40. 40.
    S. Sasaki, K. Tanaka, K. Maki, Microwave power transmission technologies for solar power satellites. Proc. IEEE 101(6), 1438–1447 (2013)CrossRefGoogle Scholar
  41. 41.
    T. Ishiyama, Y. Kanai, J. Ohwaki, M. Mino, Impact of a wireless power transmission system using an ultrasonic air transducer for low-power mobile applications, in IEEE Symposium on Ultrasonics, 2003, vol. 2 (2003), 1368–1371Google Scholar
  42. 42.
    M.G.L. Roes, M.A.M. Hendrix, J.L. Duarte, Contactless energy transfer through air by means of ultrasound, in IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society (2011), pp. 1238–1243Google Scholar
  43. 43.
    M.G.L. Roes, J.L. Duarte, M.A.M. Hendrix, E.A. Lomonova, Acoustic energy transfer: a review. IEEE Trans. Ind. Electron. 60(1), 242–248 (2013)CrossRefGoogle Scholar
  44. 44.
    T.C. Chang, M.J. Weber, M.L. Wang, J. Charthad, B.P.T. Khuri-Yakub, A. Arbabian, Design of tunable ultrasonic receivers for efficient powering of implantable medical devices with reconfigurable power loads. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(10), 1554–1562 (2016)CrossRefGoogle Scholar
  45. 45.
    V.F. Tseng, S.S. Bedair, N. Lazarus, Phased array focusing for acoustic wireless power transfer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(1), 39–49 (2018)CrossRefGoogle Scholar
  46. 46.
    P.E. Glaser, Power from the sun: its future. Science 162(3856), 857–861 (1968)CrossRefGoogle Scholar
  47. 47.
    N. Tesla (ed.), Experiments With Alternate Currents of Very High Frequency and Their Application to Methods of Artificial Illumination (Wilder, Radford, 2008)Google Scholar
  48. 48.
    T.C. Martin, N. Tesla (eds.), The Inventions Researches and Writings of Nikola Tesla With Special Reference to His Work in Polyphase Currents and High Potential Lighting (Prabhat, New York, 1894)Google Scholar
  49. 49.
    J. Dai, D.C. Ludois, A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications. IEEE Trans. Power Electron. 30(11), 6017–6029 (2015)CrossRefGoogle Scholar
  50. 50.
    M.H.M. Salleh, N. Seman, D.N.A. Zaidel, Design of a compact planar witricity device with good efficiency for wireless applications, in 2014 Asia-Pacific Microwave Conference, Sendai (2014), pp. 139–137Google Scholar
  51. 51.
    H.W. Benjamin, P.S. Alanson, R.S. Joshua, Adaptive impedance matching for magnetically coupled resonators, in PIERS Proceedings, Moscow (2012), pp. 694–702Google Scholar
  52. 52.
    L. Yongseok, T. Hoyoung, L. Seungok, P. Jongsun, An adaptive impedance-matching network based on a novel capacitor matrix forwireless power transfer. IEEE Trans. Power Electron. 29(8), 4403–4414 (2014)CrossRefGoogle Scholar
  53. 53.
    E.K. Kim, C.B. Teck, I. Takehiro, H. Yoichi, Impedance matching and power division using impedance inverter for wireless power transfer via magnetic resonant coupling. IEEE Trans. Ind. Appl. 50(3), 2061–2071 (2014)CrossRefGoogle Scholar
  54. 54.
    X. Yu, T. Skauli, B. Skauli, S. Sandhu, P. Catrysse, S. Fan, Wireless power transfer in the presence of metallic plates: experimental results. AIP Adv. 3(6), 062102 (2013)CrossRefGoogle Scholar
  55. 55.
    H. Singh, S. Lerner, K. von der Heyt, B.A. Moran, An intelligent dock for an autonomous ocean sampling network, in IEEE Oceanic Engineering Society. OCEANS’98. Conference Proceedings (Cat. No.98CH36259), vol. 3 (1998), pp. 1459–1462Google Scholar
  56. 56.
    M. Luciano, Navy’s underwater wireless charging station can improve remote UUV mission performance (2018) [Online]. Accessed 11 Aug. 2018

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG, part of Springer Nature 2019

Authors and Affiliations

  • Taofeek Orekan
    • 1
  • Peng Zhang
    • 1
  1. 1.Electrical and Computer EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations