Advertisement

An Automata-Based View on Configurability and Uncertainty

  • Martin Berglund
  • Ina Schaefer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11187)

Abstract

In this paper, we propose an automata-based method for modeling the problem of communicating with devices operating in configurations which are uncertain, but where certain information is given about the possible space of configurations, as well as probabilities for the various configuration choices. Drawing inspiration from feature models for describing configurability, an extensible automata model is described, and two decision problems modeling the question of deciding the most likely configuration (as a set of extensions) for a given communicating device are given. A series of hardness results (the entirely general problems both being NP-complete) and efficient algorithms for relevant restricted cases are then given.

Notes

Acknowledgements

This work is based on the research supported in part by the National Research Foundation of South Africa (Grant Number 115007).

References

  1. 1.
    Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987).  https://doi.org/10.1016/0890-5401(87)90052-6MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Apel, S., Batory, D.S., Kästner, C., Saake, G.: Feature-Oriented Software Product Lines: Concepts and Implementation. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37521-7CrossRefGoogle Scholar
  3. 3.
    Bojańczyk, M.: Transducers with origin information. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 26–37. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43951-7_3CrossRefGoogle Scholar
  4. 4.
    Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. Monographs in Theoretical Computer Science: An EATCS Series. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01492-5CrossRefzbMATHGoogle Scholar
  5. 5.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)zbMATHGoogle Scholar
  6. 6.
    Meinicke, J., Thüm, T., Schröter, R., Benduhn, F., Leich, T., Saake, G.: Mastering Software Variability with FeatureIDE. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-319-61443-4CrossRefGoogle Scholar
  7. 7.
    Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foundations Principles and Techniques. Springer, Heidelberg (2005).  https://doi.org/10.1007/3-540-28901-1CrossRefzbMATHGoogle Scholar
  8. 8.
    Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Math. Z. 27(1), 544–548 (1928). https://eudml.org/doc/167993MathSciNetCrossRefGoogle Scholar
  9. 9.
    Weiser, M.: The computer for the 21st century. In: Baecker, R.M., Grudin, J., Buxton, W.A.S., Greenberg, S. (eds.) Human-computer Interaction, pp. 933–940. Morgan Kaufmann Publishers (1995). (Reprinted in ACM SIGMOBILE Mobile Comput. Commun. Rev. 3(3), 3–11 (1999).  https://doi.org/10.1145/329124.329126)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Information Science and Center for AI ResearchStellenbosch UniversityStellenboschSouth Africa
  2. 2.Institute of Software Engineering and Automotive InformaticsTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations