Advertisement

Complexity Results on Register Context-Free Grammars and Register Tree Automata

  • Ryoma Senda
  • Yoshiaki Takata
  • Hiroyuki Seki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11187)

Abstract

Register context-free grammars (RCFG) and register tree automata (RTA) are an extension of context-free grammars and tree automata, respectively, to handle data values in a restricted way. RTA are paid attention as a model of query languages for structured documents such as XML with data values. This paper investigates the computational complexity of the basic decision problems for RCFG and RTA. We show that the membership and emptiness problems for RCFG are EXPTIME-complete and also show how the complexity reduces by introducing subclasses of RCFG. The complexity of these problems for RTA are also shown to be NP-complete and EXPTIME-complete.

Notes

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP15H02684.

References

  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)zbMATHGoogle Scholar
  2. 2.
    Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data trees and XML reasoning. J. ACM 56(3), Article no. 13 (2009).  https://doi.org/10.1145/1516512.1516515.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data words. ACM Trans. Comput. Log. 1(4), Article no. 27 (2011).  https://doi.org/10.1145/1970398.1970403MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bouyer, P.: A logical characterization of data languages. Inf. Process. Lett. 84(2), 75–85 (2002).  https://doi.org/10.1016/s0020-0190(02)00229-6MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981).  https://doi.org/10.1145/322234.322243MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cheng, E.Y.C., Kaminski, M.: Context-free languages over infinite alphabets. Acta Inf. 35(3), 245–267 (1998).  https://doi.org/10.1007/s002360050120MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Demri, S., Lazić, R.: LTL with freeze quantifier and register automata. ACM Trans. Comput. Log. 10(3), Article no. 16 (2009).  https://doi.org/10.1145/1507244.1507246MathSciNetCrossRefGoogle Scholar
  8. 8.
    Demri, S., Lazić, R., Nowak, D.: On the freeze quantifier in constraint LTL: decidability and complexity. Inf. Comput. 205(1), 2–24 (2007).  https://doi.org/10.1016/j.ic.2006.08.003MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Figueira, D.: Forward-XPath and extended register automata on data-trees. In: Proceedings of 13th International Conference on Database Theory, ICDT 2010, Lausanne, March 2010. ACM International Conference Proceedings Series, pp. 231–241. ACM Press, New York (2010).  https://doi.org/10.1145/1804669.1804699
  10. 10.
    Figueira, D.: Alternating register automata on finite data words and trees. Log. Methods Comput. Sci. 8(1), Article no. 22 (2012).  https://doi.org/10.2168/lmcs-8(1:22)2012
  11. 11.
    Figueira, D., Segoufin, L.: Bottom-up automata on data trees and vertical XPath. In: Schwentick, T., Dürr, C. (eds.) Proceedings of 28th International Symposium on Theoretical Aspects of Computer Science, STACS 2011, Dortmund, March 2011. Leibniz International Proceedings in Information, vol. 9, pp. 93–104. Dagstuhl Publishing, Saarbrücken/Wadern (2011).  https://doi.org/10.4230/lipics.stacs.2011.93
  12. 12.
    Jurdziński, M., Lazić, R.: Alternation-free modal mu-calculus for data trees. In: Proceedings of 22nd IEEE Symposium on Logic in Computer Science, LICS 2007, Wroclaw, July 2007, pp. 131–140. IEEE CS Press, Washington, DC (2007).  https://doi.org/10.1109/lics.2007.11
  13. 13.
    Kaji, Y., Nakanishi, R., Seki, H., Kasami, T.: The computational complexity of the universal recognition problem for parallel multiple context-free grammars. Comput. Intell. 10(4), 440–452 (1994).  https://doi.org/10.1111/j.1467-8640.1994.tb00008.xMathSciNetCrossRefGoogle Scholar
  14. 14.
    Kaminski, M., Franz, N.: Finite-memory automata. Theor. Comput. Sci. 134(2), 322–363 (1994).  https://doi.org/10.1016/0304-3975(94)90242-9MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kaminski, M., Tan, T.: Tree automata over infinite alphabets. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 386–423. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78127-1_21CrossRefGoogle Scholar
  16. 16.
    Libkin, L.: Elements of Finite Model Theory. TTCS. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-662-07003-1CrossRefzbMATHGoogle Scholar
  17. 17.
    Libkin, L., Martens, W., Vrgoč, D.: Querying graphs with data. J. ACM 63(2), Article no. 14 (2016).  https://doi.org/10.1145/2850413MathSciNetCrossRefGoogle Scholar
  18. 18.
    Libkin, T., Tan, T., Vrgoč, D.: Regular expressions for data words. J. Comput. Syst. Sci. 81(7), 1278–1297 (2015).  https://doi.org/10.1016/j.jcss.2015.03.005MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Libkin, L., Vrgoč, D.: Regular path queries on graphs with data. In: Proceedings of 15th International Conference on Database Theory, ICDT 2012, Berlin, March 2012, pp. 74–85. ACM Press, New York (2012).  https://doi.org/10.1145/2274576.2274585
  20. 20.
    Milo, T., Suciu, D., Vianu, V.: Type checking for XML transformers. In: Proceedings of 19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2000, Dallas, TX, May 2000, pp. 11–22. ACM Press, New York (2000).  https://doi.org/10.1145/335168.335171
  21. 21.
    Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite alphabets. ACM Trans. Comput. Log. 5(3), 403–435 (2004).  https://doi.org/10.1145/1013560.1013562MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Sakamoto, H., Ikeda, D.: Intractability of decision problems for finite-memory automata. Theor. Comput. Sci. 231, 297–308 (2000).  https://doi.org/10.1016/s0304-3975(99)00105-xMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006).  https://doi.org/10.1007/11874683_3CrossRefGoogle Scholar
  24. 24.
    Sipser, M.: Introduction to the Theory of Computation, 3rd edn. Cengage Learning, Boston (2013)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Graduate School of Information ScienceNagoya UniversityNagoyaJapan
  2. 2.Graduate School of EngineeringKochi University of TechnologyKami CityJapan

Personalised recommendations