Spatio-Temporal Domains: An Overview

  • David JaninEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11187)


We consider the possibility of defining a general mathematical framework for the homogeneous modeling and analysis of heterogeneous spatio-temporal computations as they occur more and more in modern computerized systems of systems. It appears that certain fibrations of posets into posets, called here spatio-temporal domains, eventually provide a fully featured category that extends to space and time the category of cpos and continuous functions, aka Scott Domains, used in classical denotational semantics.



The author wishes to express his deep gratitude to Gordon Plotkin and Phil Scott for their early advice to look at the notion of presheaves, to Marek Zawadowski for his help in understanding Grothendieck topologies and sheaves, to referees for their numerous suggestions of improvement, and to Simon Archipoff, Michail Raskin and Bernard Serpette for many fruitful discussions on various aspects of this work.


  1. 1.
    Abrial, J.R.: Modeling in Event-B: System and Software Design. Cambridge University Press, Cambridge (2010).
  2. 2.
    Archipoff, S., Janin, D.: Structured reactive programming with polymorphic temporal tiles. In: Proceedings of 4th ACM SIGPLAN International Workshop on Functional Art, Music, Modeling and Design FARM 2016, pp. 29–40. ACM Press, New York (2016).
  3. 3.
    Archipoff, S., Janin, D.: Unified media programming: an algebraic approach. In: Proceedings of 5th ACM SIGPLAN International Workshop on Functional Art, Music, Modeling and Design, FARM 2017, pp. 36–47. ACM Press, New York (2017).
  4. 4.
    Barr, M., Wells, C.: Category Theory for Computing Science, 3rd edn. Centre de Recherche Mathématique (CRM), Montréal (1999)Google Scholar
  5. 5.
    Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., De Simone, R.: The synchronous languages twelve years later. Proc. IEEE 91(1), 64–83 (2003)CrossRefGoogle Scholar
  6. 6.
    Berry, G.: Stable models of typed \(\lambda \)-calculi. In: Ausiello, G., Böhm, C. (eds.) ICALP 1978. LNCS, vol. 62, pp. 72–89. Springer, Heidelberg (1978). Scholar
  7. 7.
    Berry, G., Gonthier, G.: The Esterel synchronous programming language: design, semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992). Scholar
  8. 8.
    Cattani, G.L., Stark, I., Winskel, G.: Presheaf models for the \(\pi \)-calculus. In: Moggi, E., Rosolini, G. (eds.) CTCS 1997. LNCS, vol. 1290, pp. 106–126. Springer, Heidelberg (1997). Scholar
  9. 9.
    Cattani, G.L., Winskel, G.: Presheaf models for CCS-like languages. Theor. Comput. Sci. 300(1–3), 47–89 (2003). Scholar
  10. 10.
    Chapiro, D.M.: Globally-asynchronous locally-synchronous systems. Ph.D. thesis, Department of Computer Science, Stanford University (1985)Google Scholar
  11. 11.
    Colaço, J.L., Girault, A., Hamon, G., Pouzet, M.: Towards a higher-order synchronous data-flow language. In: Proceedings of 4th ACM International Conference on Embedded Software, EMSOFT 2004, Pisa, Septemebr 2004, pp. 230–239. ACM Press, New York (2004).
  12. 12.
    Colaço, J.-L., Pouzet, M.: Clocks as first class abstract types. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 134–155. Springer, Heidelberg (2003). Scholar
  13. 13.
    Cousot, P., Cousot, R., Mauborgne, L.: Logical abstract domains and interpretations. In: Nanz, S. (ed.) The Future of Software Engineering (Meyer Festschrift), pp. 48–71. Springer, Heidelberg (2010). Scholar
  14. 14.
    Elliott, C., Hudak, P.: Functional reactive animation. In: Proceedings of 2nd ACM International Conference on Functional Programming, ICFP 1997, Amsterdam, June 1997, pp. 263–273. ACM Press, New York (1997).
  15. 15.
    Elliott, C.M.: Push-pull functional reactive programming. In: Proceedings of 2nd ACM SIGPLAN Symposium on Haskell, Haskell 2009, Edinburgh, September 2009, pp. 25–36. ACM Press, New York (2009)
  16. 16.
    Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987). Scholar
  17. 17.
    Hudak, P.: A sound and complete axiomatization of polymorphic temporal media. Technical report, RR-1259, Department of Computer Science, Yale University (2008)Google Scholar
  18. 18.
    Hudak, P.: The Haskell School of Music: From Signals to Symphonies. Department of Computer Science, Yale University (2013)Google Scholar
  19. 19.
    Hughes, J.: Programming with arrows. In: Vene, V., Uustalu, T. (eds.) AFP 2004. LNCS, vol. 3622, pp. 73–129. Springer, Heidelberg (2005). Scholar
  20. 20.
    Jacobs, B.: Categorical Logic and Type Theory. Studies in Logic and the Foundations of Mathematics, vol. 141. North Holland, Amsterdam (1999).
  21. 21.
    Jeffrey, A.: Functional reactive types. In: Proceedings of EACSL Annual Conference and 29th Ann ACM/IEEE Symposium on Logic in Computer Science, CSL-LICS 2014, Vienna, July 2014, Article 54. ACM Press, New York (2014).
  22. 22.
    Jeltsch, W.: An abstract categorical semantics for functional reactive programming with processes. In: Proceedings of 2014 ACM SIGPLAN Workshop on Programming Languages Meets Program Verification, PLPV 2014, San Diego, CA, January 2014, pp. 47–58. ACM Press, New York (2014).
  23. 23.
    Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed I/O Automata. Synthesis Lectures on Computer Science. Morgan & Claypool Publishers (2006). Scholar
  24. 24.
    Krishnaswami, N.R.: Higher-order functional reactive programming without spacetime leaks. In: Proceedings of 18th ACM SIGPLAN International Conference on Functional Programming, ICFP 2013, Boston, MA, September 2013, pp. 221–232. ACM Press, New York (2013).
  25. 25.
    Krishnaswami, N.R., Benton, N.: Ultrametric semantics of reactive programs. In: Proceedings of 26th Annual IEEE Symposium on Logic in Computer Science, LICS 2011, Toronto, ON, June 2011, pp. 257–266. IEEE CS Press, Washington, DC (2011).
  26. 26.
    Liu, X., Lee, E.A.: CPO semantics of timed interactive actor networks. Theor. Comput. Sci. 409(1), 110–125 (2008). Scholar
  27. 27.
    Mac Lane, S., Moerdijk, I.: Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Universitext. U. Springer, New York (1992). Scholar
  28. 28.
    Matsikoudis, E., Lee, E.A.: The fixed-point theory of strictly causal functions. Theor. Comput. Sci. 574, 39–77 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Streicher, T.: Fibred categories à la Jean Bénabou. Revised notes of a course on fibred categories given at a spring school in Munich 1999 (2014)Google Scholar
  30. 30.
    Teehan, P., Greenstreet, M.R., Lemieux, G.G.: A survey and taxonomy of GALS design styles. IEEE Des. Test. Comput. 24(5), 418–428 (2007). Scholar
  31. 31.
    Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). Scholar
  32. 32.
    Winskel, G.: Events, causality and symmetry. In: Proceedings of BCS International Academic Conference on Visions of Computer Science, London, September 2008, pp. 111–127. Electronic Workshops in Computing. British Computer Society (2008).

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.LaBRI, Bordeaux INP, Université de BordeauxTalence CedexFrance

Personalised recommendations