Generating Armstrong ABoxes for \(\mathcal {ALC}\) TBoxes

  • Henriette HarmseEmail author
  • Katarina Britz
  • Aurona Gerber
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11187)


A challenge in ontology engineering is the mismatch in expertise between the ontology engineer and domain expert, which often leads to important constraints not being specified. Domain experts often only focus on specifying constraints that should hold and not on specifying constraints that could possibly be violated. In an attempt to bridge this gap we propose the use of “perfect test data”. The generated test data is perfect in that it satisfies all the constraints of an application domain that are required, including ensuring that the test data violates constraints that can be violated. In the context of Description Logic ontologies we call this test data an “Armstrong ABox”, a notion derived from Armstrong relations in relational database theory. In this paper we detail the theoretical development of Armstrong ABoxes for \(\mathcal {ALC}\) TBoxes as well as an algorithm for generating such Armstrong ABoxes. The proposed algorithm is based, via the ontology completion algorithm of Baader et al. on attribute exploration in formal concept analysis.


  1. 1.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2007). Scholar
  2. 2.
    Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic knowledge bases using formal concept analysis. In: Veloso, M.M. (ed.) Proceedings of 20th International Joint Conference on Artificial Intelligence. IJCAI 2007, January 2007, Hyderabad, pp. 230–235. Morgan Kaufmann Publishers (2007).
  3. 3.
    Baader, F., Horrocks, I., Sattler, U.: Description logics. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation. Foundations of Articial Intelligence, vol. 3, pp. 135–179. Elsevier, Amsterdam (2008). Scholar
  4. 4.
    Baader, F., Sertkaya, B.: Usability issues in description logic knowledge base completion. In: Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS (LNAI), vol. 5548, pp. 1–21. Springer, Heidelberg (2009). Scholar
  5. 5.
    Boehm, B., Basili, V.R.: Software defect reduction top 10 list. IEEE Comput. 34(1), 135–137 (2001). Scholar
  6. 6.
    Brooks, F.P.: No silver bullet: essence and accidents of software engineering. IEEE Comput. 20(4), 10–19 (1987). Scholar
  7. 7.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002). Scholar
  8. 8.
    Fagin, R., Vardi, M.Y.: Armstrong databases for functional and inclusion dependencies. Inf. Process Lett. 16(1), 13–19 (1983). Scholar
  9. 9.
    Ganter, B., Obiedkov, S.: Conceptual Exploration. Springer, Heidelberg (2016). Scholar
  10. 10.
    Guigues, J.L., Duquenne, V.: Famille minimale d’implications informatives résultant d’un tableau de données binaires. Math. Sci. Hum. 24(95), 5–18 (1986)Google Scholar
  11. 11.
    Harmse, H., Britz, K., Gerber, A.: Informative Armstrong RDF datasets for \(n\)-ary relations. In: Borgo, S., Hitzler, P. (eds.) Proceedings of 10th International Conference on Formal Ontology in Information Systems. Frontiers in Artificial Intelligence and Applications, pp. 187–199. IOS Press (2018).
  12. 12.
    Harmse, H., Britz, K., Gerber, A.: Armstrong relations for ontology design and evaluation. In: Lenzerini, M., Peñaloza, R. (eds.) Proceedings of 29th International Workshop on Description Logics. CEUR Workshop Proceedings, vol. 1577. (2016).
  13. 13.
    Konev, B., Ozaki, A., Wolter, F.: A model for learning description logic ontologies based on exact learning. In: Schuurmans, D., Wellman, M.P. (eds.) Proceedings of 13th AAAI Conference on Artificial Intelligence, February 2016, Phoenix, AZ, pp. 1008–1015. AAAI Press (2016).
  14. 14.
    Langeveldt, W., Link, S.: Empirical evidence for the usefulness of Armstrong relations in the acquisition of meaningful functional dependencies. Inf. Syst. 35(3), 352–374 (2010). Scholar
  15. 15.
    Link, S.: Armstrong databases: validation, communication and consolidation of conceptual models with perfect test data. In: Ghose, A., Ferrarotti, F.A. (eds.) Proceedings of 8th Asia-Pacific Conference on Conceptual Modelling. APCCM 2012, CRPIT, January–February 2012, Melbourne, vol. 130, pp. 3–20. Australian Computer Society (2012).
  16. 16.
    Nebel, B.: Reasoning and Revision in Hybrid Representation Systems. LNCS, vol. 422. Springer, Heidelberg (1990). Scholar
  17. 17.
    Rudolph, S.: Relational Exploration: Combining Description Logics and Formal Concept Analysis for Knowledge Specification. Ph.D. thesis, Technische Universität Dresden (2006)Google Scholar
  18. 18.
    Sertkaya, B.: Formal Concept Analysis Methods for Description Logics. Ph.D. thesis, Technische Universität Dresden (2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Henriette Harmse
    • 1
    Email author
  • Katarina Britz
    • 2
  • Aurona Gerber
    • 1
  1. 1.Department of Informatics and Centre of AI ResearchUniversity of PretoriaHatfieldSouth Africa
  2. 2.Department of Information Science and Centre of AI ResearchStellenbosch UniversityMatielandSouth Africa

Personalised recommendations