Advertisement

Immunotherapy for Melanoma

  • Isabella C. Glitza OlivaEmail author
  • Rana Alqusairi
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 995)

Abstract

While melanoma is less common than some other skin cancers, it is responsible for nearly 10,000 deaths in the USA each year alone. For many decades, very limited treatment options were available for patients with metastatic melanoma. However, recent breakthroughs have brought new hopes for patients and providers.

While targeted therapy with BRAF and MEK inhibitors represents an important cornerstone in the treatment of metastatic melanoma, this chapter carefully reviews the past and current therapy options available, with a significant focus on immunotherapy-based approaches. In addition, we provide an overview of the results of recent advances in the adjuvant setting for patients with resected stage III and stage IV melanoma, as well as in patients with melanoma brain metastases. Finally, we provide a quick overview over the current research efforts in the field of immuno-oncology and melanoma.

Keywords

Melanoma Immunotherapy Ipilimumab Pembrolizumab Nivolumab CTLA-4 PD-1 PD-L1 Adjuvant therapy Brain metastasis 

References

  1. 1.
    Tas F, Keskin S, Karadeniz A, et al. Noncutaneous melanoma have distinct features from each other and cutaneous melanoma. Oncology. 2011;81(5–6):353–8.PubMedCrossRefGoogle Scholar
  2. 2.
    McCourt C, Dolan O, Gormley G. Malignant melanoma: a pictorial review. Ulster Med J. 2014;83(2):103–10.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Lideikaite A, Mozuraitiene J, Letautiene S. Analysis of prognostic factors for melanoma patients. Acta Med Litu. 2017;24(1):25–34.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Jiang T, Zhou C, Ren S. Role of IL-2 in cancer immunotherapy. Oncoimmunology. 2016;5(6):e1163462.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Atkins MB, Lotze MT, Dutcher JP, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17(7):2105–16.PubMedCrossRefGoogle Scholar
  6. 6.
    Hughes T, Klairmont M, Broucek J, Iodice G, Basu S, Kaufman HL. The prognostic significance of stable disease following high-dose interleukin-2 (IL-2) treatment in patients with metastatic melanoma and renal cell carcinoma. Cancer Immunol Immunother. 2015;64(4):459–65.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Schwartzentruber DJ. Guidelines for the safe administration of high-dose interleukin-2. J Immunother. 2001;24(4):287–93.PubMedCrossRefGoogle Scholar
  8. 8.
    Serrone L, Zeuli M, Sega FM, Cognetti F. Dacarbazine-based chemotherapy for metastatic melanoma: thirty-year experience overview. J Exp Clin Cancer Res. 2000;19(1):21–34.PubMedGoogle Scholar
  9. 9.
    Hill GJ II, Krementz ET, Hill HZ. Dimethyl triazeno imidazole carboxamide and combination therapy for melanoma. IV. Late results after complete response to chemotherapy (Central Oncology Group protocols 7130, 7131, and 7131A). Cancer. 1984;53(6):1299–305.PubMedCrossRefGoogle Scholar
  10. 10.
    Bajetta E, Del Vecchio M, Bernard-Marty C, et al. Metastatic melanoma: chemotherapy. Semin Oncol. 2002;29(5):427–45.PubMedCrossRefGoogle Scholar
  11. 11.
    Bhatia S, Tykodi SS, Thompson JA. Treatment of metastatic melanoma: an overview. Oncology (Williston Park). 2009;23(6):488–96.Google Scholar
  12. 12.
    Li RH, Hou XY, Yang CS, et al. Temozolomide for treating malignant melanoma. J Coll Physicians Surg Pak. 2015;25(9):680–8.PubMedGoogle Scholar
  13. 13.
    Quirt I, Verma S, Petrella T, Bak K, Charette M. Temozolomide for the treatment of metastatic melanoma: a systematic review. Oncologist. 2007;12(9):1114–23.PubMedCrossRefGoogle Scholar
  14. 14.
    Middleton MR, Grob JJ, Aaronson N, et al. Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol. 2000;18(1):158–66.PubMedCrossRefGoogle Scholar
  15. 15.
    Hodi FS, Soiffer RJ, Clark J, Finkelstein DM, Haluska FG. Phase II study of paclitaxel and carboplatin for malignant melanoma. Am J Clin Oncol. 2002;25(3):283–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Rao RD, Holtan SG, Ingle JN, et al. Combination of paclitaxel and carboplatin as second-line therapy for patients with metastatic melanoma. Cancer. 2006;106(2):375–82.PubMedCrossRefGoogle Scholar
  17. 17.
    Hersh EM, O’Day SJ, Ribas A, et al. A phase 2 clinical trial of nab-paclitaxel in previously treated and chemotherapy-naive patients with metastatic melanoma. Cancer. 2010;116(1):155–63.PubMedGoogle Scholar
  18. 18.
    Kottschade LA, Suman VJ, Amatruda T III, et al. A phase II trial of nab-paclitaxel (ABI-007) and carboplatin in patients with unresectable stage IV melanoma: a North Central Cancer Treatment Group Study, N057E(1). Cancer. 2011;117(8):1704–10.PubMedCrossRefGoogle Scholar
  19. 19.
    Legha SS, Ring S, Papadopoulos N, Plager C, Chawla S, Benjamin R. A prospective evaluation of a triple-drug regimen containing cisplatin, vinblastine, and dacarbazine (CVD) for metastatic melanoma. Cancer. 1989;64(10):2024–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Atkins MB, Hsu J, Lee S, et al. Phase III trial comparing concurrent biochemotherapy with cisplatin, vinblastine, dacarbazine, interleukin-2, and interferon alfa-2b with cisplatin, vinblastine, and dacarbazine alone in patients with metastatic malignant melanoma (E3695): a trial coordinated by the Eastern Cooperative Oncology Group. J Clin Oncol. 2008;26(35):5748–54.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Grunhagen DJ, Verhoef C. Isolated limb perfusion for stage III melanoma: does it still have a role in the present era of effective systemic therapy? Oncology (Williston Park). 2016;30(12):1045–52.Google Scholar
  22. 22.
    Eggermont AM, van Geel AN, de Wilt JH, ten Hagen TL. The role of isolated limb perfusion for melanoma confined to the extremities. Surg Clin North Am. 2003;83(2):371–84, ix.PubMedCrossRefGoogle Scholar
  23. 23.
    Lotze MT, Rosenberg SA. Results of clinical trials with the administration of interleukin 2 and adoptive immunotherapy with activated cells in patients with cancer. Immunobiology. 1986;172(3–5):420–37.PubMedCrossRefGoogle Scholar
  24. 24.
    Rosenberg SA, Yannelli JR, Yang JC, et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst. 1994;86(15):1159–66.PubMedCrossRefGoogle Scholar
  25. 25.
    Dudley ME, Wunderlich JR, Yang JC, et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol. 2005;23(10):2346–57.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Baruch EN, Berg AL, Besser MJ, Schachter J, Markel G. Adoptive T cell therapy: an overview of obstacles and opportunities. Cancer. 2017;123(S11):2154–62.PubMedCrossRefGoogle Scholar
  27. 27.
    Merhavi-Shoham E, Itzhaki O, Markel G, Schachter J, Besser MJ. Adoptive cell therapy for metastatic melanoma. Cancer J. 2017;23(1):48–53.PubMedCrossRefGoogle Scholar
  28. 28.
    Page DM, Kane LP, Allison JP, Hedrick SM. Two signals are required for negative selection of CD4+CD8+ thymocytes. J Immunol. 1993;151(4):1868–80.PubMedGoogle Scholar
  29. 29.
    Brunet JF, Dosseto M, Denizot F, et al. The inducible cytotoxic T-lymphocyte-associated gene transcript CTLA-1 sequence and gene localization to mouse chromosome 14. Nature. 1986;322(6076):268–71.PubMedCrossRefGoogle Scholar
  30. 30.
    Wei SC, Levine JH, Cogdill AP, et al. Distinct cellular mechanisms underlie anti-CTLA-4 and Anti-PD-1 checkpoint blockade. Cell. 2017;170(6):1120–33.e1117.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517–26.PubMedCrossRefGoogle Scholar
  33. 33.
    Buchbinder EI, Gunturi A, Perritt J, et al. A retrospective analysis of high-dose interleukin-2 (HD IL-2) following ipilimumab in metastatic melanoma. J Immunother Cancer. 2016;4:52.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Ohaegbulam KC, Assal A, Lazar-Molnar E, Yao Y, Zang X. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med. 2015;21(1):24–33.PubMedCrossRefGoogle Scholar
  36. 36.
    Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hodi FS, Chesney J, Pavlick AC, et al. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 2016;17(11):1558–68.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Larkin J, Hodi FS, Wolchok JD. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(13):1270–1.PubMedCrossRefGoogle Scholar
  39. 39.
    Ribas A, Puzanov I, Dummer R, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16(8):908–18.PubMedCrossRefGoogle Scholar
  40. 40.
    Robert C, Schachter J, Long GV, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Long GV, Atkinson V, Cebon JS, et al. Standard-dose pembrolizumab in combination with reduced-dose ipilimumab for patients with advanced melanoma (KEYNOTE-029): an open-label, phase 1b trial. Lancet Oncol. 2017;18(9):1202–10.PubMedCrossRefGoogle Scholar
  42. 42.
    Hirayama M, Nishimura Y. The present status and future prospects of peptide-based cancer vaccines. Int Immunol. 2016;28(7):319–28.PubMedCrossRefGoogle Scholar
  43. 43.
    Schwartzentruber DJ, Lawson DH, Richards JM, et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med. 2011;364(22):2119–27.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Thompson JF, Hersey P, Wachter E. Chemoablation of metastatic melanoma using intralesional Rose Bengal. Melanoma Res. 2008;18(6):405–11.PubMedCrossRefGoogle Scholar
  45. 45.
    Thompson JF, Agarwala SS, Smithers BM, et al. Phase 2 study of intralesional PV-10 in refractory metastatic melanoma. Ann Surg Oncol. 2015;22(7):2135–42.PubMedCrossRefGoogle Scholar
  46. 46.
    Read TA, Smith A, Thomas J, et al. Intralesional PV-10 for the treatment of in-transit melanoma metastases-results of a prospective, non-randomized, single center study. J Surg Oncol. 2018;117(4):579–87.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Conry RM, Westbrook B, McKee S, Norwood TG. Talimogene laherparepvec: first in class oncolytic virotherapy. Hum Vaccin Immunother. 2018;14(4):839–46.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Andtbacka RH, Kaufman HL, Collichio F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Puzanov I, Milhem MM, Minor D, et al. Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma. J Clin Oncol. 2016;34(22):2619–26.PubMedCrossRefGoogle Scholar
  50. 50.
    Ribas A, Dummer R, Puzanov I, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell. 2017;170(6):1109–19.e1110.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Cohen JV, Tawbi H, Margolin KA, et al. Melanoma central nervous system metastases: current approaches, challenges, and opportunities. Pigment Cell Melanoma Res. 2016;29(6):627–42.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Goldberg SB, Gettinger SN, Mahajan A, et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2016;17(7):976–83.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Tawbi HA, Forsyth PAJ, Algazi PA, Hamid O, Hodi FS, Moschos S, Khushalani N, Margolin KA. Efficacy and safety of nivolumab (NIVO) plus ipilimumab (IPI) in patients with melanoma (MEL) metastatic to the brain: results of the phase II study CheckMate 204. J Clin Oncol. 2012;30 (Suppl; abstr 8584). 2017;35:(Suppl; abstr 9507).Google Scholar
  54. 54.
    Balch CM, Gershenwald JE, Soong SJ, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27(36):6199–206.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Agha A, Tarhini AA. Adjuvant therapy for melanoma. Curr Oncol Rep. 2017;19(5):36.PubMedCrossRefGoogle Scholar
  56. 56.
    Kirkwood JM, Resnick GD, Cole BF. Efficacy, safety, and risk-benefit analysis of adjuvant interferon alfa-2b in melanoma. Semin Oncol. 1997;24(1 Suppl 4):S16–23.PubMedGoogle Scholar
  57. 57.
    Kirkwood JM, Ibrahim JG, Sondak VK, et al. High- and low-dose interferon alfa-2b in high-risk melanoma: first analysis of intergroup trial E1690/S9111/C9190. J Clin Oncol. 2000;18(12):2444–58.PubMedCrossRefGoogle Scholar
  58. 58.
    Ives NJ, Suciu S, Eggermont AMM, et al. Adjuvant interferon-alpha for the treatment of high-risk melanoma: an individual patient data meta-analysis. Eur J Cancer. 2017;82:171–83.PubMedCrossRefGoogle Scholar
  59. 59.
    Eggermont AM, Suciu S, Testori A, et al. Long-term results of the randomized phase III trial EORTC 18991 of adjuvant therapy with pegylated interferon alfa-2b versus observation in resected stage III melanoma. J Clin Oncol. 2012;30(31):3810–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Flaherty LE, Othus M, Atkins MB, et al. Southwest Oncology Group S0008: a phase III trial of high-dose interferon Alfa-2b versus cisplatin, vinblastine, and dacarbazine, plus interleukin-2 and interferon in patients with high-risk melanoma--an intergroup study of cancer and leukemia Group B, Children’s Oncology Group, Eastern Cooperative Oncology Group, and Southwest Oncology Group. J Clin Oncol. 2014;32(33):3771–8.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Eggermont AM, Chiarion-Sileni V, Grob JJ, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2015;16(5):522–30.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Eggermont AM, Chiarion-Sileni V, Grob JJ, et al. Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N Engl J Med. 2016;375(19):1845–55.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Weber J, Mandala M, Del Vecchio M, et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. 2017;377(19):1824–35.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med. 2005;11(3):312–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Yue EW, Sparks R, Polam P, et al. INCB24360 (Epacadostat), a highly potent and selective Indoleamine-2,3-dioxygenase 1 (IDO1) inhibitor for immuno-oncology. ACS Med Chem Lett. 2017;8(5):486–91.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Goldberg MV, Drake CG. LAG-3 in cancer immunotherapy. Curr Top Microbiol Immunol. 2011;344:269–78.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Catakovic K, Klieser E, Neureiter D, Geisberger R. T cell exhaustion: from pathophysiological basics to tumor immunotherapy. Cell Commun Signal. 2017;15(1):1.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Hahn AW, Gill DM, Pal SK, Agarwal N. The future of immune checkpoint cancer therapy after PD-1 and CTLA-4. Immunotherapy. 2017;9(8):681–92.PubMedCrossRefGoogle Scholar
  69. 69.
    Fourcade J, Sun Z, Benallaoua M, et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med. 2010;207(10):2175–86.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Buchan SL, Rogel A, Al-Shamkhani A. The immunobiology of CD27 and OX40 and their potential as targets for cancer immunotherapy. Blood. 2018;131(1):39–48.PubMedGoogle Scholar
  71. 71.
    Oberst MD, Auge C, Morris C, et al. Potent immune modulation by MEDI6383, an engineered human OX40 ligand IgG4P Fc fusion protein. Mol Cancer Ther. 2018;17(5):1024–38.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Chester C, Sanmamed MF, Wang J, Melero I. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood. 2018;131(1):49–57.PubMedGoogle Scholar
  73. 73.
    Huang B, Zhao J, Unkeless JC, Feng ZH, Xiong H. TLR signaling by tumor and immune cells: a double-edged sword. Oncogene. 2008;27(2):218–24.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.The University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.BaltimoreUSA

Personalised recommendations