Advertisement

Using a Graph Visualization Tool for Parallel Program Dynamic Visualization and Communication Analysis

  • Denise StringhiniEmail author
  • Pedro Spoljaric Gomes
  • Alvaro Fazenda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11203)

Abstract

Parallel program visualization and performance analysis tools have a high cost of development. As a consequence, there are many of these tools that are proprietary what makes difficult their adoption by the general community. This work introduces the use of general purpose open software for visualization and characterization of parallel programs. In particular, the use of an open graph visualization tool is presented as a case study for the dynamic communication characterization of a NAS parallel benchmark. The results show that a general purpose open graph tool could be used to analyze some important aspects related to the communication of parallel message passing programs.

References

  1. 1.
    Lee, C.W., Mendes, C.L., Kalé, L.V.: Towards scalable performance analysis and visualization through data reduction. In: 2008 IEEE International Symposium on Parallel and Distributed Processing, pp. 1–8 (2008)Google Scholar
  2. 2.
    Zamani, R., Afsahi, A.: Communication characteristics of message-passing scientific and engineering applications. In: Zheng, S.Q. (ed.) Proceedings of IASTED PDCS, Phoenix, AZ, USA, pp. 644–649. IASTED/ACTA Press, November 2005Google Scholar
  3. 3.
    Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: The MPI Core. MPI-The Complete Reference, vol. 1, 2nd edn. MIT Press, Cambridge (1998)Google Scholar
  4. 4.
    Mercier, G., Clet-Ortega, J.: Towards an efficient process placement policy for MPI applications in multicore environments. In: Ropo, M., Westerholm, J., Dongarra, J. (eds.) EuroPVM/MPI 2009. LNCS, vol. 5759, pp. 104–115. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03770-2_17CrossRefGoogle Scholar
  5. 5.
    Huck, K.A., Potter, K., Jacobsen, D.W., Childs, H., Malony, A.D.: Linking performance data into scientific visualization tools. In: Proceedings of the First Workshop on Visual Performance Analysis, ser. VPA 2014, Piscataway, NJ, USA, pp. 50–57. IEEE Press (2014)Google Scholar
  6. 6.
    Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for exploring and manipulating networks. In: Proceedings of International AAAI Conference on Weblogs and Social Media, San Jose, CA, USA, May 2009Google Scholar
  7. 7.
    Trahay, F., Rué, F., Faverge, M., Ishikawa, Y., Namyst, R., Dongarra, J.: EZTrace: a generic framework for performance analysis. In: Proceedings of CCGRID. IEEE, Newport Beach, May 2011Google Scholar
  8. 8.
    Stringhini, D., Fazenda, A.: Characterizing communication patterns of parallel programs through graph visualization and analysis. In: Hunold, S., et al. (eds.) Euro-Par 2015. LNCS, vol. 9523, pp. 565–576. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-27308-2_46CrossRefGoogle Scholar
  9. 9.
    Knüpfer, A., et al.: The vampir performance analysis tool-set. In: Resch, M., Keller, R., Himmler, V., Krammer, B., Schulz, A. (eds.) Parallel Tools Workshop, pp. 139–155. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68564-7_9CrossRefGoogle Scholar
  10. 10.
    Schmitt, F., Dietrich, R., Kuß, R., Doleschal, J., Knüpfer, A.: Visualization of performance data for MPI applications using circular hierarchies. In: Proceedings of the First Workshop on Visual Performance Analysis, VPA 2014, New Orleans, Louisiana, USA, pp. 1–8, 16–21 November 2014.  https://doi.org/10.1109/VPA.2014.5
  11. 11.
    Wu, J., Zeng, J., Yu, H., Kenny, J.P.: Commgram: A new visual analytics tool for large communication trace data. In: Proceedings of the First Workshop on Visual Performance Analysis, VPA 2014. Piscataway, NJ, USA, pp. 28–35. IEEE Press (2014).  https://doi.org/10.1109/VPA.2014.8
  12. 12.
    Pillet, V., Labarta, J., Cortes, T., Girona, S.: PARAVER: A tool to visualize and analyze parallel code. In: Proceedings of WoTUG-18: Transputer and Occam Developments, vol. 44, no. 1, pp. 17–31. IOS Press (1995)Google Scholar
  13. 13.
    PARAVER: a flexible performance analysis tool. https://tools.bsc.es/paraver
  14. 14.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc., San Francisco (2000)zbMATHGoogle Scholar
  15. 15.
    de Kergommeaux, J.C., de Oliveira Stein, B.: Pajé: an extensible environment for visualizing multi-threaded programs executions. In: Bode, A., Ludwig, T., Karl, W., Wismüller, R. (eds.) Euro-Par 2000. LNCS, vol. 1900, pp. 133–140. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44520-X_17. http://dl.acm.org/citation.cfm?id=646665.699423CrossRefGoogle Scholar
  16. 16.
    The Gephi website. http://www.gephi.org/
  17. 17.
    Hu, Y.F.: Efficient and high quality force-directed graph drawing. Mathematica J. 10(1), 37–71 (2005)MathSciNetGoogle Scholar
  18. 18.
    Baily, D., et al.: The NAS parallel benchmarks. RNR-94-007.pdf, March 1994. http://www.nas.nasa.gov/assets/pdf/techreports/1994/

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Denise Stringhini
    • 1
    Email author
  • Pedro Spoljaric Gomes
    • 1
  • Alvaro Fazenda
    • 1
  1. 1.Universidade Federal de Sao PauloSao PauloBrazil

Personalised recommendations