Advertisement

Impact of Approximate Memory Data Allocation on a H.264 Software Video Encoder

  • Giulia Stazi
  • Lorenzo Adani
  • Antonio Mastrandrea
  • Mauro Olivieri
  • Francesco MenichelliEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11203)

Abstract

This paper describes the analysis, in terms of tolerance to errors on data, of a H.264 software video encoder; proposes a strategy to select data structures for approximate memory allocation and reports the impact on output video quality. Applications that tolerate errors on their data structures are known as ETA (Error Tolerant Applications) and have an important part in pushing interest on approximate computing research. We centered our study on H.264 video encoding, a video compression format developed for use in high definition systems, and today one of the most widespread video compression standard, used for broadcast, consumer and mobile applications. While data fault resilience of H.264 has already been studied considering unwanted and random faults due to unreliable hardware platforms, an analysis, considering controlled hardware faults and the corresponding energy quality tradeoff, has never been proposed.

References

  1. 1.
    Asma, B.H., Jarray, N., Abdelkrim, Z.: Low-power hardware design of binary arithmetic encoder in H. 264. Int. J. Adv. Comput. Sci. Appl. 8(7), 412–416 (2017)Google Scholar
  2. 2.
    Esmaeilzadeh, H., Sampson, A., Ceze, L., Burger, D.: Architecture support for disciplined approximate programming. In: ACM SIGPLAN Notices, vol. 47, pp. 301–312. ACM (2012)CrossRefGoogle Scholar
  3. 3.
    Huang, J., Lach, J., Robins, G.: A methodology for energy-quality tradeoff using imprecise hardware. In: Proceedings of the 49th Annual Design Automation Conference, pp. 504–509. ACM (2012)Google Scholar
  4. 4.
    Kwon, J., Chang, I.J., Lee, I., Park, H., Park, J.: Heterogeneous sram cell sizing for low-power H. 264 applications. IEEE Trans. Circ. Syst. I Regul. Pap. 59(10), 2275–2284 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Liu, J., Jaiyen, B., Veras, R., Mutlu, O.: RAIDR: retention-aware intelligent dram refresh. In: ACM SIGARCH Computer Architecture News, vol. 40, pp. 1–12. IEEE Computer Society (2012)Google Scholar
  6. 6.
    Liu, S., Pattabiraman, K., Moscibroda, T., Zorn, B.G.: Flikker: saving DRAM refresh-power through critical data partitioning. ACM SIGPLAN Not. 47(4), 213–224 (2012)CrossRefGoogle Scholar
  7. 7.
    Menichelli, F., Stazi, G., Mastrandrea, A., Olivieri, M.: An emulator for approximate memory platforms based on QEmu. In: De Gloria, A. (ed.) ApplePies 2016. LNEE, vol. 429, pp. 153–159. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-55071-8_20CrossRefGoogle Scholar
  8. 8.
    Merritt, L., Vanam, R.: x264: A High Performance H. 264/avc Encoder (2006). http://neuron2.net/library/avc/overview_x264_v8_5.pdf
  9. 9.
    Montgomery, C., et al.: Xiph.org Video Test Media (Derf’s Collection), The xiph Open Source Community (1994). https://media.xiph.org/video/derf
  10. 10.
    Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary instrumentation. In: ACM Sigplan Notices, vol. 42, pp. 89–100. ACM (2007)Google Scholar
  11. 11.
    Raha, A., Sutar, S., Jayakumar, H., Raghunathan, V.: Quality configurable approximate DRAM. IEEE Trans. Comput. 66(7), 1172–1187 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rehman, S., Shafique, M., Kriebel, F., Henkel, J.: ReVC: computationally reliable video coding on unreliable hardware platforms: a case study on error-tolerant H. 264/AVC CAVLC entropy coding. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp. 397–400. IEEE (2011)Google Scholar
  13. 13.
    Shafique, M., et al.: Application-guided power-efficient fault tolerance for H. 264 context adaptive variable length coding. IEEE Trans. Comput. 66(4), 560–574 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Stazi, G., Menichelli, F., Mastrandrea, A., Olivieri, M.: Introducing approximate memory support in Linux Kernel. In: 2017 13th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME), pp. 97–100. IEEE (2017)Google Scholar
  15. 15.
    Teman, A., Karakonstantis, G., Giterman, R., Meinerzhagen, P., Burg, A.: Energy versus data integrity trade-offs in embedded high-density logic compatible dynamic memories. In: Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition, pp. 489–494. EDA Consortium (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Information Engineering, Electronics and Telecommunications (DIET)Sapienza University of RomeRomeItaly

Personalised recommendations