In-Situ Visualization of Solver Residual Fields

  • Kai SdeoEmail author
  • Boyan Zheng
  • Marian Piatkowski
  • Filip Sadlo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11203)


Whereas the design and development of numerical solvers for field-based simulations is a highly evolved discipline, and whereas there exists a wide range of visualization techniques for the (in-situ) analysis of their numerical results, the techniques for analyzing the operation of such solvers are rather elementary. In this paper, we present a visualization approach for in-situ analysis of the processes within numerical solvers. That is, instead of visualizing the data that result from such solvers, we address the visualization of the processes that generate the data. We exemplify our approach using different simulation runs, and discuss its in-situ application in high-performance computing environments.


Residual analysis Solver analysis In-situ visualization 



This work was supported by Forschungsallianz Baden-Württemberg, “Data-Integrated Simulation Science (DISS)”, and the Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences (HGS MathComp), founded by DFG grant GSC 220 in the German Universities Excellence Initiative.


  1. 1.
    Blatt, M., et al.: The distributed and unified numerics environment, version 2.4. Arch. Numer. Softw. 100(4), 13–29 (2016)MathSciNetGoogle Scholar
  2. 2.
    Cabral, B., Leedom, L.C.: Imaging vector fields using line integral convolution. In: Proceedings of 20th Annual Conference on Computer Graphics and Interactive Techniques, pp. 263–270 (1993)Google Scholar
  3. 3.
    Dahlquist, G., Björck, Å.: Numerical Methods. Dover Books on Mathematics. Dover Publications, New York (2003)zbMATHGoogle Scholar
  4. 4.
    Dahlquist, G.G.: A special stability problem for linear multistep methods. BIT Numer. Math. 3(1), 27–43 (1963)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Haimes, R., Liu, E., Kirby, R.M., Nelson, B.: ElVis: a system for the accurate and interactive visualization of high-order finite element solutions. IEEE Trans. Vis. Comput. Graph. 18, 2325–2334 (2012)CrossRefGoogle Scholar
  6. 6.
    Hubbard, J., Schleicher, D., Sutherland, S.: How to find all roots of complex polynomials by Newton’s method. Inventiones Mathematicae 146(1), 1–33 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Karch, G.K., et al.: Visualization of piecewise linear interface calculation. In: Proceedings of IEEE Pacific Visualization Symposium (PacificVis), pp. 121–128 (2013)Google Scholar
  8. 8.
    Kress, J.: In situ visualization techniques for high performance computing. Technical report, University of Oregon (2017)Google Scholar
  9. 9.
    Schollmeyer, A., Froehlich, B.: Direct isosurface ray casting of NURBS-based isogeometric analysis. IEEE Trans. Vis. Comput. Graph. 20(9), 1227–1240 (2014)CrossRefGoogle Scholar
  10. 10.
    Üffinger, M., Frey, S., Ertl, T.: Interactive high-quality visualization of higher-order finite elements. Comput. Graph. Forum 29(2), 115–136 (2010)CrossRefGoogle Scholar
  11. 11.
    Üffinger, M., Sadlo, F., Munz, C.D., Ertl, T.: Toward wall function consistent interpolation of flow fields. In: Short Paper Proceedings of EuroVis 2013, pp. 85–89 (2013)Google Scholar
  12. 12.
    Üffinger, M., Schweitzer, M.A., Sadlo, F., Ertl, T.: Direct visualization of particle-partition of unity data. In: Proceedings of International Workshop on Vision, Modeling and Visualization (VMV), pp. 255–262 (2011)Google Scholar
  13. 13.
    Usher, W., Wald, I., Knoll, A., Papka, M., Pascucci, V.: In situ exploration of particle simulations with CPU ray tracing. Supercomput. Front. Innov.: Int. J. 3(4), 4–18 (2016)Google Scholar
  14. 14.
    Vetter, O.: Development and integration of an in-situ framework for flow visualization of large-scale, unsteady phenomena in ICON. Supercomput. Front. Innov.: Int. J. 4(3), 55–67 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Kai Sdeo
    • 1
    Email author
  • Boyan Zheng
    • 1
  • Marian Piatkowski
    • 1
  • Filip Sadlo
    • 1
  1. 1.Heidelberg UniversityHeidelbergGermany

Personalised recommendations