Advertisement

Streaming Live Neuronal Simulation Data into Visualization and Analysis

  • Simon OehrlEmail author
  • Jan Müller
  • Jan Schnathmeier
  • Jochen Martin Eppler
  • Alexander Peyser
  • Hans Ekkehard Plesser
  • Benjamin Weyers
  • Bernd Hentschel
  • Torsten W. Kuhlen
  • Tom Vierjahn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11203)

Abstract

Neuroscientists want to inspect the data their simulations are producing while these are still running. This will on the one hand save them time waiting for results and therefore insight. On the other, it will allow for more efficient use of CPU time if the simulations are being run on supercomputers. If they had access to the data being generated, neuroscientists could monitor it and take counter-actions, e.g., parameter adjustments, should the simulation deviate too much from in-vivo observations or get stuck.

As a first step toward this goal, we devise an in situ pipeline tailored to the neuroscientific use case. It is capable of recording and transferring simulation data to an analysis/visualization process, while the simulation is still running. The developed libraries are made publicly available as open source projects. We provide a proof-of-concept integration, coupling the neuronal simulator NEST to basic 2D and 3D visualization.

Keywords

Neuroscientific simulation In situ visualization 

Notes

Acknowledgements

This project has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement Nos 720270 (HBP SGA1) and 785907 (HBP SGA2), and from the Excellence Initiative of the German federal and state governments.

References

  1. 1.
    Ayachit, U.: The ParaView Guide: A Parallel Visualization Application. Kitware Inc., New York (2015)Google Scholar
  2. 2.
    Ayachit, U., et al.: ParaView catalyst: enabling in situ data analysis and visualization. In: Proceedings of 1st Workshop In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, pp. 25–29 (2015).  https://doi.org/10.1145/2828612.2828624
  3. 3.
    Ayachit, U., et al.: The SENSEI generic in situ interface. In: Proceedings of 2nd Workshop In Situ Infrastructures for Enabling Extreme-scale Analysis and Visualization, pp. 40–44 (2016).  https://doi.org/10.1109/ISAV.2016.13
  4. 4.
    Childs, H., et al.: VisIt: an end-user tool for visualizing and analyzing very large data. In: High Performance Visualization-Enabling Extreme-Scale Scientific Insight, pp. 357–372 (2012)Google Scholar
  5. 5.
    Cumming, B., Yates, S., Klijn, W., Peyser, A., Karakasis, V., Perez, I.M.: Arbor: A morphologically detailed neural network simulator for modern high performance computer architectures. Proc. Neurosci. (2017). http://juser.fz-juelich.de/record/840405
  6. 6.
    Diesmann, M., Gewaltig, M.O., Rotter, S., Aertsen, A.: State space analysis of synchronous spiking in cortical neural networks. Neurocomputing 38–40, 565–571 (2001).  https://doi.org/10.1016/S0925-2312(01)00409-XCrossRefGoogle Scholar
  7. 7.
    Djurfeldt, M., et al.: Run-time interoperability between neuronal network simulators based on the MUSIC framework. Neuroinformatics 8(1), 43–60 (2010).  https://doi.org/10.1007/s12021-010-9064zCrossRefGoogle Scholar
  8. 8.
    Gewaltig, M.O., Diesmann, M.: NEST (neural simulation tool). Scholarpedia 2(4), 1430 (2007)CrossRefGoogle Scholar
  9. 9.
    Hines, M.L., Carnevale, N.T.: NEURON: a tool for neuroscientists. Neuroscientist 7(2), 123–135 (2001).  https://doi.org/10.1177/107385840100700207CrossRefGoogle Scholar
  10. 10.
    Kobayashi, R., Tsubo, Y., Shinomoto, S.: Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Front Comput. Neurosci. 3, 9 (2009).  https://doi.org/10.3389/neuro.10.009.2009CrossRefGoogle Scholar
  11. 11.
    Larsen, M., et al.: The ALPINE in situ infrastructure: ascending from the ashes of strawman. In: Proceedings of 3rd Workshop In Situ Infrastructures on Enabling Extreme-Scale Analysis and Visualization, pp. 42–46 (2017).  https://doi.org/10.1145/3144769.3144778
  12. 12.
    Lytton, W.W., Seidenstein, A.H., Dura-Bernal, S., McDougal, R.A., Schürmann, F., Hines, M.L.: Simulation neurotechnologies for advancing brain research: parallelizing large networks in NEURON. Neural Comput. 28(10), 2063–2090 (2016).  https://doi.org/10.1162/NECO_a_00876MathSciNetCrossRefGoogle Scholar
  13. 13.
    Markram, H., et al.: Introducing the human brain project. Procedia Comput. Sci. 7, 39–42 (2011).  https://doi.org/10.1016/j.procs.2011.12.015CrossRefGoogle Scholar
  14. 14.
    Morrison, A., Straube, S., Plesser, H.E., Diesmann, M.: Exact subthreshold integration with continuous spike times in discrete-time neural network simulations. Neural Comput. 19(1), 47–79 (2007).  https://doi.org/10.1162/neco.2007.19.1.47MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary instrumentation. SIGPLAN Not. 42(6), 89–100 (2007).  https://doi.org/10.1145/1273442.1250746CrossRefGoogle Scholar
  16. 16.
    Nowke, C., et al.: Toward rigorous parameterization of underconstrained neural network models through interactive visualization and steering of connectivity generation. Front Neuroinf. (2018). Provisionally acceptedGoogle Scholar
  17. 17.
    Nowke, C., Zielasko, D., Weyers, B., Peyser, A., Hentschel, B., Kuhlen, T.W.: Integrating visualizations into modeling NEST simulations. Front Neuroinf. 9, 29 (2015).  https://doi.org/10.3389/fninf.2015.00029CrossRefGoogle Scholar
  18. 18.
    Rotter, S., Diesmann, M.: Exact digital simulation of time-invariant linear systems with applications to neuronal modeling. Biol. Cybern. 81(5), 381–402 (1999).  https://doi.org/10.1007/s004220050570CrossRefzbMATHGoogle Scholar
  19. 19.
    Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit-An Object-Oriented Approach To 3D Graphics, 4th edn. Kitware Inc., New York (2006)Google Scholar
  20. 20.
    Schuecker, J., Schmidt, M., van Albada, S.J., Diesmann, M., Helias, M.: Fundamental activity constraints lead to specific interpretations of the connectome. PLoS Comput. Biol. 13(2), 1–25 (2017).  https://doi.org/10.1371/journal.pcbi.1005179CrossRefGoogle Scholar
  21. 21.
    Schumann, T., Frings, W., Peyser, A., Schenck, W., Thust, K., Eppler, J.M.: Modeling the I/O behavior of the NEST simulator using a proxy. In: Proceedings of 3rd ECCOMAS Young Investigators Conference (2015). http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:82-rwth-2015-039806
  22. 22.
    Whitlock, B., Favre, J.M., Meredith, J.S.: Parallel in situ coupling of simulation with a fully featured visualization system. In: EG Symposium Parallel Graphics and Visualization (2011).  https://doi.org/10.2312/EGPGV/EGPGV11/101-109

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Virtual Reality and Immersive VisualizationRWTH Aachen UniversityAachenGermany
  2. 2.SimLab Neuroscience, Forschungszentrum Jülich GmbH, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC)JülichGermany
  3. 3.Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), Forschungszentrum Jülich GmbHJülichGermany
  4. 4.Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
  5. 5.JARA-HPCAachenGermany
  6. 6.JARA-BRAIN Institute IJülichGermany

Personalised recommendations