Advertisement

In Situ Analysis and Visualization of Fusion Simulations: Lessons Learned

  • Mark KimEmail author
  • James Kress
  • Jong Choi
  • Norbert Podhorszki
  • Scott Klasky
  • Matthew Wolf
  • Kshitij Mehta
  • Kevin Huck
  • Berk Geveci
  • Sujin Phillip
  • Robert Maynard
  • Hanqi Guo
  • Tom Peterka
  • Kenneth Moreland
  • Choong-Seock Chang
  • Julien Dominski
  • Michael Churchill
  • David Pugmire
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11203)

Abstract

The trends in high performance computing, where far more data can be computed that can ever be stored, have made in situ techniques an important area of research and development. Simulation campaigns, where domain scientists work with computer scientists to run a simulation and perform in situ analysis and visualization are important, and complex undertakings. In this paper we report our experiences performing in situ analysis and visualization on two campaigns. The two campaigns were related, but had important differences in terms of the codes that were used, the types of analysis and visualization required, and the visualization tools used. Further, we report the lessons learned from each campaign.

Keywords

In situ Scientific Visualization 

References

  1. 1.
    Ahrens, J., Geveci, B., Law, C.: Visualization in the paraview framework. In: Hansen, C., Johnson, C. (eds.) The Visualization Handbook, pp. 162–170 (2005)Google Scholar
  2. 2.
    Ainsworth, M., Tugluk, O., Whitney, B., Klasky, S.: MGARD: a multilevel technique for compression of floating-point data. In: DRBSD-2 Workshop at Supercomputing 2017, Colorado, USA (2017)Google Scholar
  3. 3.
    Ainsworth, M., Tugluk, O., Whitney, B., Klasky, S.: Multilevel techniques for compression and reduction of scientific data-the univariate case. Comput. Vis. Sci. (2017, submitted)Google Scholar
  4. 4.
    Ayachit, U., et al.: The SENSEI generic in situ interface. In: 2016 Second Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV), pp. 40–44, November 2016.  https://doi.org/10.1109/ISAV.2016.013
  5. 5.
    Ayachit, U., et al.: ParaView catalyst: enabling in situ data analysis and visualization. In: Proceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, pp. 25–29. ACM (2015)Google Scholar
  6. 6.
    Bauer, A.C., et al.: In situ methods, infrastructures, and applications on high performance computing platforms, a state-of-the-art (STAR) report. In: Computer Graphics Forum, Proceedings of EuroVis 2016, vol. 35, no. 3, June 2016. LBNL-1005709Google Scholar
  7. 7.
    Bennett, J.C., et al.: Combining in-situ and in-transit processing to enable extreme-scale scientific analysis. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC 2012, pp. 49:1–49:9. IEEE Computer Society Press, Los Alamitos (2012). http://dl.acm.org/citation.cfm?id=2388996.2389063
  8. 8.
    Chang, C., et al.: Compressed ion temperature gradient turbulence in diverted tokamak edgea. Phys. Plasmas (1994-present) 16(5), 056108 (2009)CrossRefGoogle Scholar
  9. 9.
    Childs, H., et al.: VisIt: an end-user tool for visualizing and analyzing very large data. In: High Performance Visualization-Enabling Extreme-Scale Scientific Insight, pp. 357–372, October 2012Google Scholar
  10. 10.
    Dayal, J., et al.: Flexpath: type-based publish/subscribe system for large-scale science analytics. In: 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 246–255. IEEE (2014)Google Scholar
  11. 11.
    Di, S., Cappello, F.: Fast error-bounded lossy HPC data compression with SZ. In: 2016 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2016, Chicago, IL, USA, 23–27 May 2016, pp. 730–739 (2016)Google Scholar
  12. 12.
    Docan, C., Parashar, M., Klasky, S.: Dataspaces: an interaction and coordination framework for coupled simulation workflows. Cluster Comput. 15(2), 163–181 (2012)CrossRefGoogle Scholar
  13. 13.
    Dominski, J., et al.: A tight-coupling scheme sharing minimum information across a spatial interface between gyrokinetic turbulence codes. Phys. Plasmas 25(7), 072308 (2018).  https://doi.org/10.1063/1.5044707CrossRefGoogle Scholar
  14. 14.
    Dominski, J., Merlo, G., et al.: Gyrokinetic core-edge coupling of the continuum code GENE with the particle-in-cell code XGC (temporary title). (in preparation)Google Scholar
  15. 15.
    Foster, I., et al.: Computing just what you need: online data analysis and reduction at extreme scales. In: Rivera, F.F., Pena, T.F., Cabaleiro, J.C. (eds.) Euro-Par 2017. LNCS, vol. 10417, pp. 3–19. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-64203-1_1CrossRefGoogle Scholar
  16. 16.
    Görler, T., et al.: The global version of the gyrokinetic turbulence code gene. J. Comput. Phys. 230(18), 7053–7071 (2011).  https://doi.org/10.1016/j.jcp.2011.05.034. http://www.sciencedirect.com/science/article/pii/S0021999111003457MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Liu, Q., et al.: Hello ADIOS: the challenges and lessons of developing leadership class I/O frameworks. Concurrency Comput.: Pract. Exp. 26(7), 1453–1473 (2014).  https://doi.org/10.1002/cpe.3125CrossRefGoogle Scholar
  18. 18.
    Moreland, K., et al.: VTK-m: accelerating the visualization toolkit for massively threaded architectures. IEEE Comput. Graph. Appl. 36(3), 48–58 (2016)CrossRefGoogle Scholar
  19. 19.
    Parker, S.G., Johnson, C.R.: SCIRun: a scientific programming environment for computational steering. In: Proceedings of the 1995 ACM/IEEE Conference on Supercomputing, p. 52. ACM (1995)Google Scholar
  20. 20.
    Shende, S.S., Malony, A.D.: The tau parallel performance system. Int. J. High Perform. Comput. Appl. 20(2), 287–311 (2006)CrossRefGoogle Scholar
  21. 21.
    Tao, D., Di, S., Guo, H., Chen, Z., Cappello, F.: Z-checker: a framework for assessing lossy compression of scientific data. Int. J. High Perform. Comput. Appl. 1094342017737147 (2017).  https://doi.org/10.1177/1094342017737147
  22. 22.
    Tchoua, R., et al.: ADIOS visualization schema: a first step towards improving interdisciplinary collaboration in high performance computing. In: 2013 IEEE 9th International Conference on e-Science, pp. 27–34, October 2013.  https://doi.org/10.1109/eScience.2013.24
  23. 23.
    Whitlock, B., Favre, J., Meredith, J.: Parallel in situ coupling of simulation with a fully featured visualization system. In: Proceedings of the 11th Eurographics Conference on Parallel Graphics and Visualization, pp. 101–109 (2011)Google Scholar
  24. 24.
    Zhang, F., et al.: In-memory staging and data-centric task placement for coupled scientific simulation workflows. Concurrency Comput.: Pract. Exp. 29(12), e4147 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mark Kim
    • 1
    Email author
  • James Kress
    • 1
    • 5
  • Jong Choi
    • 1
  • Norbert Podhorszki
    • 1
  • Scott Klasky
    • 1
  • Matthew Wolf
    • 1
  • Kshitij Mehta
    • 1
  • Kevin Huck
    • 5
  • Berk Geveci
    • 3
  • Sujin Phillip
    • 3
  • Robert Maynard
    • 3
  • Hanqi Guo
    • 2
  • Tom Peterka
    • 2
  • Kenneth Moreland
    • 4
  • Choong-Seock Chang
    • 6
  • Julien Dominski
    • 6
  • Michael Churchill
    • 6
  • David Pugmire
    • 1
  1. 1.Oak Ridge National LaboratoryOak RidgeUSA
  2. 2.Argonne National LaboratoryLemontUSA
  3. 3.Kitware Inc.Clifton ParkUSA
  4. 4.Sandia National LaboratoriesAlbuquerqueUSA
  5. 5.University of OregonEugeneUSA
  6. 6.Princeton Plasma Physics LaboratoryPrincetonUSA

Personalised recommendations