Advertisement

Bioconjugated Quantum Dots in Rapid Detection of Water Microbial Load: An Emerging Technology

  • Indu Pal Kaur
  • Joga Singh
  • Jatinder V. Yakhmi
  • Gurpal Singh
  • Corinne Dejous
  • Alka Bhatia
  • Ashish Sattee
  • Udit Soni
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Drinking water contaminated with pathogenic living forms is a major concern for human health in developing countries because it can lead to acute and sometimes life-threatening gastrointestinal diseases. There is thus a need to detect potentially harmful pathogens and identify them in the presence of several other nonpathogenic microbes, particularly in the urban water systems to prevent infection and disease.

Shiga toxin producing E. coli is one of the largest common pathogenic bacteria causing diarrhea. Salmonella typhimurium and Listeria monocytogenes are other microbes contaminating water. Immediate detection of these pathogens can help avoid infections.

Nanomaterials have unique physical, optical, and electrical properties which can be employed for detection of pathogens. Quantum dots (QDs) are one such class deployed for rapid detection of pathogenic bacteria in water samples. QDs are preferred over the fluorescent organic dyes, as they display intense and stable fluorescence for a longer period of time; are resistant towards photo-bleaching; and provide a highly sensitive and specific detection of pathogens.

Biosensors that help in rapid detection of pathogenic bacteria using fluorescent bioconjugated quantum dots (QDs) are reported. This chapter summarizes studies on use of QDs or QD-based biosensors for detection of waterborne pathogens and scope for future applications in the area.

References

  1. Adler M, Wacker R, Niemeyer CM (2008) Sensitivity by combination: immuno-PCR and related technologies. Analyst 103:702–718CrossRefGoogle Scholar
  2. Armengaud J (2013) Microbiology and proteomics, getting the best of both worlds. Environ Microbiol 15:12–23CrossRefGoogle Scholar
  3. Brinkman NE, Francisco R, Nichols TL, Robinson D, Schaefer FW, Schaudies RP, Villegas EN (2013) Detection of multiple waterborne pathogens using microsequencing arrays. J Appl Microbiol 114:564–573CrossRefGoogle Scholar
  4. Bruchez MJ, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016CrossRefGoogle Scholar
  5. Canuel EA, Cloen JE, Ringelberg DB, Guckert JB, Rau GH (1995) Molecular and isotopic tracers used to examine sources of organic matter and its incorporation into the food webs of San Francisco Bay. J Oceanol Limnol 40:67–81CrossRefGoogle Scholar
  6. Carew ME, Pettigrove VJ, Metzeling L, Hoffmann AA (2013) Environmental monitoring using nextgeneration sequencing: rapid identification of macroinvertebrate bioindicator species. Front Zool 10:45–50CrossRefGoogle Scholar
  7. Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46CrossRefGoogle Scholar
  8. Cihalova K, Hegerova D, Jimenez AMJ, Milosavljevic V, Kudr J, Skalickova S, Hynek D, Kopel P, Vaculovicova M, Adam V (2017) Antibody-free detection of infectious bacteria using quantum dots based barcode assay. J Pharm Biomed Anal 134:325–332CrossRefGoogle Scholar
  9. Fan H, Wu Q, Kou X (2008) Co-detection of five species of water-borne bacteria by multiplex PCR. Life Sci J 5:47–54Google Scholar
  10. Fykse EM, Nilsen T, Nielsen AD, Tryland I, Delacroix S, Blatny JM (2012) Real-time PCR and NASBA for rapid and sensitive detection of Vibrio cholerae in ballast water. Mar Pollut Bull 64:200–206CrossRefGoogle Scholar
  11. Gas F, Baus B, Pinto L, Compere C, Tanchou V, Quéméneur E (2010) One step immunochromatographic assay for the rapid detection of Alexandrium minutum. Biosens Bioelectron 25:1235–1239CrossRefGoogle Scholar
  12. Gullapalli S, Barron A (2010) Optical Characterization of Group 12–16 (II-VI) semiconductor nanoparticles by fluorescence spectroscopy. Connexions Web siteGoogle Scholar
  13. Hedrick DB, White DC (1986) Microbial respiratory quinones in the environment: I. A sensitive liquid chromatographic method. J Microbiol Methods 5:243–254CrossRefGoogle Scholar
  14. Ishii S, Nakamura T, Ozawa S, Kobayashi A, Sano D, Okabe S (2014) Water quality monitoring and risk assessment by simultaneous multipathogen quantification. Environ Sci Technol 48:4744–4749CrossRefGoogle Scholar
  15. Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E (1999) Biosensors for detection of pathogenic bacteria. Biosens Bioelectron 14:599–624CrossRefGoogle Scholar
  16. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51CrossRefGoogle Scholar
  17. Lee DY, Seto P, Korczak R (2010) DNA microarray-based detection and identification of waterborne protozoan pathogens. J Microbiol Methods 80:129–133CrossRefGoogle Scholar
  18. McClung RP, Roth DM, Vigar M, Roberts VA, Kahler AM, Cooley LA, Hilborn ED, Wade TJ, Fullerton KE, Yoder JS, Hill VR (2017) Waterborne disease outbreaks associated With environmental and undetermined exposures to water-United States, 2013–2014. Morb Mortal Wkly Rep 66:1222–1225CrossRefGoogle Scholar
  19. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446CrossRefGoogle Scholar
  20. Michalet X, Pinaud F, Lacoste TD, Dahan M, Bruchez MP (2001) Properties of flourescent semiconductor nanocrystals and their application to biological labeling. Single Mol 2:261–276CrossRefGoogle Scholar
  21. Mishra G, Bacher G, Roy U, Bhand S (2015) A label free impedemetric immunosensor for detection of Escherichia coli in water. Adv Sci Lett 4:76–82Google Scholar
  22. Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Res 30:545–610Google Scholar
  23. NIAID biodefense research agenda for category B and C priority pathogens, U.S department of health and human services (2004) http://biodefense.niaid.nih.gov
  24. Nygård K, Andersson Y, Lindkvist P, Ancker C, Asteberg I (2008) Water and infection: epidemiological studies of epidemic and endemic waterborne disease. University of Oslo, OsloGoogle Scholar
  25. Rajeswaria PKP, Soderberga LM, Yacoubb A, Leijonb M, Svahna HA, Joenssona HN (2017) Multiple pathogen biomarker detection using an encoded bead array in droplet PCR. J Microbiol Methods 139:22–28CrossRefGoogle Scholar
  26. Ram S, Vajpayee P, Shanker R (2008) Rapid culture-independent quantitative detection of enterotoxigenic Escherichia coli in surface waters by real-time PCR with molecular beacon. Environ Sci Technol 42:4577–4582CrossRefGoogle Scholar
  27. Ramírez-Castillo FY, Loera-Muro A, Jacques M, Garneau P, Avelar-González FJ, Harel J, Guerrero-Barrera AL (2015) Waterborne pathogens: detection methods and challenges. PathoGenetics 4:307–334Google Scholar
  28. Richa J, Gurpal S, Swati J, Zainuk Abid CKV, Harpal S, Neelam HZ, Udit S, Sameer S, Shrivastav TG (2011) Bioconjugated quantum dots based rapid detection of pathogenic bacteria from water. Int J Nanosci 10:199–203CrossRefGoogle Scholar
  29. Rosenthal JS, Chang JC, Kovtun O, McBride JR, Tomlinson ID (2011) Biocompatible quantum dots for biological applications. Chem Biol 18:10–24CrossRefGoogle Scholar
  30. Samendra PS, Masaaki K, Charles PG, Lan LP (2014) Rapid detection technologies for monitoring microorganisms in water. Biosens J 3:109Google Scholar
  31. Samhan FA, Kronlein MR, Fakher U, Kronlein C, Stedtfeld RD, Hashsham SA (2015) Detection and occurrence of indicator organisms and pathogens. Water Environ Res 87:883–900CrossRefGoogle Scholar
  32. Smith AM, Nie S (2004) Chemical analysis and cellular imaging with quantum dots. Anal 129:672–677CrossRefGoogle Scholar
  33. Taly V, Pekin D, Benhaim L, Kotsopoulos SK, Corre DL, Li X, Atochin I, Link DR, Griffiths AD, Pallier K, Blons H, Bouché O, Landi B, Hutchison JB, Laurent-Puig P (2013) Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin Chem 59:1722–1731CrossRefGoogle Scholar
  34. Tanchou V (2014) Review of methods for the rapid identification of pathogens in water samples. In: Thematic group: chemical and biological risks to the water sector. Report EUR 26881 ENGoogle Scholar
  35. Taylora AD, Yua Q, Chena S, Homolaa J, Jianga S (2005) Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor. Sensors Actuators 107:202–208CrossRefGoogle Scholar
  36. Tracz DM, McCorrister SJ, Chong PM, Lee DM, Corbett CR, Westmacott GR (2013) A simple shotgun proteomics method for rapid bacterial identification. J Microbiol Methods 94:54–57CrossRefGoogle Scholar
  37. Tsen HY, Lin CK, Chi WR (1998) Development and use of 16s rRNA gene targeted PCR primers for the identification of Escherichia coli cells in waters. J Appl Microbiol 85:554–560CrossRefGoogle Scholar
  38. Veala DA, Deerea D, Ferraria B, Piperb J, Attfielda PV (2000) Fluorescence staining and flow cytometry for monitoring microbial cells. J Immunol Methods 243:191–210CrossRefGoogle Scholar
  39. White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979) Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51–62CrossRefGoogle Scholar
  40. White DC, Cory AL, Ying-Dong MG, Yvette MP, Michael HW, Aaron DP, Smith CA (2002) Flash detection/identification of pathogens, bacterial spores and bioterrorism agent biomarkers from clinical and environmental matrices. J Microbiol Methods 48:139–147CrossRefGoogle Scholar
  41. WHO (2014) Preventing diarrhoea through better water, sanitation and hygiene. http://apps.who.int/iris/bitstream/handle/10665/150112
  42. Wilson WJ, Strout CL, DeSantis TZ, Stilwell JL, Carrano AV, Andersen GL (2002) Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. Mol Cell Probes 16:119–127CrossRefGoogle Scholar
  43. Wolter A, Niessner R, Seidel M (2008) Detection of Escherichia coli O157:H7, Salmonella typhimurium, and Legionella pneumophila in water using a flow-through chemiluminescence microarray readout system. Anal Chem 80:5854–5863CrossRefGoogle Scholar
  44. Wu TY, Su YY, Shu WH, Mercado AT, Wang SK, Hsu LY, Tsai YF, Chen CY (2016) A novel sensitive pathogen detection system based on microbead quantum dot system. Biosens Bioelectron 78:37–44CrossRefGoogle Scholar
  45. Yan X, Gurtler J, Fratamico P, Hu J, Gunther NW IV, Juneja V, Huang L (2011) Comprehensive approaches to molecular biomarker discovery for detection and identification of Cronobacter spp. (Enterobacter sakazakii) and Salmonella spp. Appl Environ Microbiol 77:1833–1843CrossRefGoogle Scholar
  46. Zhang CXY, Brooks BW, Huang H, Pagotto F, Lin M (2016) Identification of surface protein biomarkers of Listeria monocytogenes via bioinformatics and antibody-based protein detection tools. Appl Environ Microbiol 82:5465–5476CrossRefGoogle Scholar
  47. Zhua H, Sikoraa U, Ozcan A (2012) Quantum dot enabled detection of Escherichia coli using a cellphone. Ana 137:2541–2544CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Indu Pal Kaur
    • 1
  • Joga Singh
    • 1
  • Jatinder V. Yakhmi
    • 2
  • Gurpal Singh
    • 1
  • Corinne Dejous
    • 3
  • Alka Bhatia
    • 4
  • Ashish Sattee
    • 5
  • Udit Soni
    • 6
  1. 1.University Institute of Pharmaceutical SciencesPanjab UniversityChandigarhIndia
  2. 2.Formerly at Bhabha Atomic Research CentreMumbaiIndia
  3. 3.Universite de Bordeaux, IMS, ENSEIRB, CNRS UMR 5218TalenceFrance
  4. 4.Department of Experimental Medicine and BiotechnologyPGIMERChandigarhIndia
  5. 5.Faculty of Applied Medical Sciences, Department of Pharmacognosy and PhytochemistryLPUPhagwaraIndia
  6. 6.Department of BiotechnologyTeri School of Advanced StudiesNew DelhiIndia

Personalised recommendations