Application of Nano-Photocatalysts for Degradation and Disinfection of Wastewater

  • Jayaseelan Arun
  • Vargees Felix
  • Marudai Joselyn Monica
  • Kannappan Panchamoorthy GopinathEmail author
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Photocatalytic disinfection was studied by many researchers globally due to its capability of degrading microorganisms in wastewater. Many studies were reported on photocatalytic disinfection but still there was a gap on disinfection mechanisms and models. Nano-photocatalysts were effectively used in treatment process than conventional methods. The utilization of nano-photocatalysts was a phenomenal choice for wastewater treatment since wastewater can be reused; this in turn decreases the water necessity.


Photocatalysis Wastewater Water pollution Disinfection Nanocatalyst 


  1. Adeleye A-S, Conway J-R, Garner K, Huang Y, Su Y, Keller A-A (2016) Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chem Eng J 286:640–662CrossRefGoogle Scholar
  2. Akhavan O (2009) Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. J Colloid Interface Sci 336:117–124CrossRefGoogle Scholar
  3. Barakat M-A, Ramadan M-H, Alghamdi M-A, Al-Garny S-S, Woodcock H-L, Kuhn J-N (2013) Remediation of Cu (II), Ni (II), and Cr (III) ions from simulated wastewater by dendrimer/titania composites. J Environ Manag 117:50–57CrossRefGoogle Scholar
  4. Bilal M, Iqbal M, Hu H, Zhang X (2016) Mutagenicity, cytotoxicity and phytotoxicity evaluation of biodegraded textile effluent by fungal ligninolytic enzymes. Water Sci Technol 73:2332–2344CrossRefGoogle Scholar
  5. Booshehri A-Y, Polo-Lopez M, Castro-Alférez M, He P, Xu R, Rong W, Malato S, Fernández-Ibáñez P (2017) Assessment of solar photocatalysis using Ag/BiVO4 at pilot solar compound parabolic collector for inactivation of pathogens in well water and secondary effluents. Catal Today 281:124–134CrossRefGoogle Scholar
  6. Caballero L, Whitehead K-A, Allen N-S, Verran J (2009) Inactivation of Escherichia coli on immobilized TiO2 using fluorescent light. J Photochem Photobiol A 202:92–98CrossRefGoogle Scholar
  7. Chandrakar R-K, Baghel R-N, Chandra V-K, Chandra B-P (2015) Synthesis, characterization and photoluminescence studies of Mn doped ZnS nanoparticles. Superlattices Microstruct 86:256–269CrossRefGoogle Scholar
  8. Chen C-Z, Zhou Z-W (2004) The preparation of nano-ZnO and its middle infrared ultraviolet visible light absorption properties. J Funct Mater 35:97–98Google Scholar
  9. Coutinho C-A, Gupta V-K (2009) Photocatalytic degradation of methyl orange using polymer titania microcomposites. J Colloid Interface Sci 333:457–464CrossRefGoogle Scholar
  10. Dai J, Chi Wang H, Wang Y, Zhao J (2016) Immobilization of laccase from Pleurotus ostreatus on magnetic separable SiO2 support and excellent activity towards Azo dye decolorization. J Environ Chem Eng 4:2585–2591CrossRefGoogle Scholar
  11. Dalrymple O-K, Tefanakos E-S, Trotz M-A, Yogi Goswami D (2010) A review of the mechanisms and modeling of photocatalytic disinfection. Appl Catal B Environ 98:27–38CrossRefGoogle Scholar
  12. Demchick P, Koch A-L (1996) The permeability of the wall fabric of Escherichia coli and Bacillus subtilis. J Bacteriol 178:768–773CrossRefGoogle Scholar
  13. Dos Santos A-B, Cervantes F-J, Van Lier J-B (2007) Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour Technol 98:2369–2385CrossRefGoogle Scholar
  14. Dubrac S, Touati D (2002) Fur-mediated transcriptional and posttranscriptional regulation of FeSOD expression in Escherichia coli. Microbiology 148:147–156CrossRefGoogle Scholar
  15. Dutta A-K, Maji S-K, Adhikary B (2014) γ-Fe2O3 nanoparticles: an easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant. Mat Res Bull 49:28–34CrossRefGoogle Scholar
  16. Eskizeybek V, Sari F, Gulce H, Gulce A, Avci A (2012) Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl Catal B Environ 119:197–206CrossRefGoogle Scholar
  17. French R-A, Jacobson A-R, Kim B, Isley S-L, Penn R-L, Baveye P-C (2009) Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol 43:1354–1359CrossRefGoogle Scholar
  18. Gogniat G, Dukan S (2007) TiO2 photocatalysis causes DNA damage via Fenton reaction-generated hydroxyl radicals during the recovery period. Appl Environ Microbiol 73:7740–7743CrossRefGoogle Scholar
  19. Greist H-T, Hingorani S-K, Kelley K, Goswami D-Y (2002) Using scanning electron microscopy to visualize photocatalytic mineralization of airborne microorganisms, In: Indoor Air 2002, 9th International Conference on Indoor Air Quality and Climate, Monterey, CA, 2002Google Scholar
  20. Gupta V-K, Tyagi I, Sadegh H, Shahryari-Ghoshekand R, Makhlouf A-S-H, Maazinejad B (2015) Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: a review. Sci Technol Develop 34:195CrossRefGoogle Scholar
  21. Hayat K, Gondal M-A, Khaled M-M, Ahmed S, Shemsi A-M (2011) Nano ZnO synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water. Appl Catal A General 393:122–129CrossRefGoogle Scholar
  22. Hidaka H, Horikoshi S, Ajisaka K, Zhao J, Serpone N (1997a) Photoelectrochemical decomposition of amino acids on a TiO2/OTE particulate film electrode. J Photochem Photobiol 108:197–205CrossRefGoogle Scholar
  23. Hidaka H, Horikoshi S, Serpone N, Knowland J (1997b) In vitro photochemical damage to DNA, RNA and their bases by an inorganic sunscreen agent on exposure to UVA and UVB radiation. J Photochem Photobiol A 111:205–213CrossRefGoogle Scholar
  24. Huang N-P, Min-hua X, Yuan C-W, Rui-Rong Y (1997) The study of the photokilling effect and mechanism of ultrafine TiO2 particles on U937 cells. Photobiol A 108:229–233CrossRefGoogle Scholar
  25. Jamal A, Rahman M-M, Khan S-B, Faisal M, Akhtar K, Rub M-A, Asiri A-M, Al-Youbi A-O (2012) Cobalt doped antimony oxide nano-particles based chemical sensor and photo-catalyst for environmental pollutants. Appl Surface Sci 261:52–58CrossRefGoogle Scholar
  26. Jiang W, Kim B-Y, Rutka J-T, Chan W-C (2008) Nanoparticle-mediated cellular response is size dependent. Nat Nanotechnol 3:145–150CrossRefGoogle Scholar
  27. Kubacka A, Ferrer M, Cerrada M-L, Serrano C, Sánchez-Chaves M, Fernández García M (2009) Boosting TiO2-anatase antimicrobial activity: polymer-oxide thin films. Appl Catal B 89:441–447CrossRefGoogle Scholar
  28. Kühn K-P, Chaberny I-F, Massholder K, Stickler M, Benz V-W, Sonntag H-G (2003) Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere 53:71–77CrossRefGoogle Scholar
  29. Lade H, Govindwar S, Paul D (2015) Mineralization and detoxification of the carcinogenic Azo dye Congo red and real textile effluent by a polyurethane foam immobilized microbial consortium in an upflow column bioreactor. Int J Environ Res Public Health 12:6894–6918CrossRefGoogle Scholar
  30. Li W, Zhang Y, Tian G, Xie S, Xu Q, Wang L, Tian J, Bu Y (2016) Fabrication of graphene- modified nano-sized red phosphorus for enhanced photocatalytic performance. J Mol Catal A Chem 423:356–364CrossRefGoogle Scholar
  31. Lin S-T, Thirumavalavan M, Jiang T-Y, Lee J-F (2014) Synthesis of ZnO/Zn nano photocatalyst using modified polysaccharides for photodegradation of dyes. Carbohydr Polym 105:1–9CrossRefGoogle Scholar
  32. Lu Z-X, Zhou L, Zhang Z-L, Shi W-L, Xie Z-X, Xie H-Y (2003) Cell damage induced by photocatalysis of TiO2 thin films. Langmuir 19:8765–8768CrossRefGoogle Scholar
  33. Magdigan M-T, Martinko J-M (2006) Brock biology of microorganisms, 11th edn. Pearson Education, Inc., Upper Saddle River, NJGoogle Scholar
  34. Magnuson K, Jackowski S, Rock C-O, Cronan J-E Jr (1993) Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol Mol Biol Rev 57:522–542Google Scholar
  35. Mailander V, Landfester K (2009) Interaction of nanoparticles with cells. Biomacromolecules 10:2379–2400CrossRefGoogle Scholar
  36. Matai I, Sachdev A, Dubey P, Kumar SU, Bhushan B, Gopinath P (2014) Antibacterial activity and mechanism of Ag–ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. Colloids Surf B Biointerfaces 115:359–367CrossRefGoogle Scholar
  37. Matsunaga T, Tomoda R, Nakajima T, Wake H (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 29:211–214CrossRefGoogle Scholar
  38. Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A 108:1–35CrossRefGoogle Scholar
  39. Ni M, Leung M-K, Leung D-Y, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11:401–425CrossRefGoogle Scholar
  40. Nieuwenhuijsen M-J, Toledano M-B, Eaton N-E, Fawell J, Elliott P (2000) Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review. Occup Environ Med 57:73–85CrossRefGoogle Scholar
  41. Oleary W-M (1962) The fatty acids of bacteria. Bacteriol Rev 26:421–435Google Scholar
  42. Pal A, Pehkonen S-O, Yu L-E, Ray M-B (2007) Photocatalytic inactivation of gram-positive and gram-negative bacteria using fluorescent light. J Photochem Photobiol A 186:335–341CrossRefGoogle Scholar
  43. Qu X, Alvarez P-J, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946CrossRefGoogle Scholar
  44. Ramírez-Montoya L-A, Hernández-Montoya V, Montes-Morán M-A, Jáuregui-Rincón J, Cervantes F-J (2015) Decolorization of dyes with different molecular properties using free and immobilized laccases from Trametes versicolor. J Mol Liq 212:30–37CrossRefGoogle Scholar
  45. Rao M-A, Scelza R, Acevedo F, Diez M-C, Gianfreda L (2014) Enzymes as useful tools for environmental purposes. Chemosphere 107:145–162CrossRefGoogle Scholar
  46. Reddy M-P, Venugopal A, Subrahmanyam M (2007) Hydroxyapatite-supported Ag-TiO2 as Escherichia coli disinfection photocatalyst. Water Res 41:379–386CrossRefGoogle Scholar
  47. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255CrossRefGoogle Scholar
  48. Sathishkumar P, Kamala-Kannan S, Cho M, Kim J-S, Hadibarata T, Salim M-R, Oh B-T (2014) Laccase immobilization on cellulose nanofiber: the catalytic efficiency and recyclic application for simulated dye effluent treatment. J Mol Catal B Enzym 100:111–120CrossRefGoogle Scholar
  49. Stefan I-L, Irwin F (1999) Superoxide and iron: partners in crime. IUBMB Life 48:157–161CrossRefGoogle Scholar
  50. Sunnotel O, Verdoold R, Dunlop P-S-M, Snelling W-J, Lowery C-J, Dooley J-S-G (2010) Photocatalytic inactivation of Cryptosporidium parvum on nanostructured titanium dioxide films. J Water Health 8:83–91CrossRefGoogle Scholar
  51. Tran T-H, Nosaka A-Y, Nosaka Y (2006) Fourier transform reflection−absorption IR spectroscopy study of Formate adsorption on TiO2. J Phys Chem B 110:25525–25531CrossRefGoogle Scholar
  52. Vinodgopal K, Kamat P-V (1992) Photochemistry on surfaces: photodegradation of 1,3- diphenylisobenzofuran over metal oxide particles. J Phys Chem 96:5053–5059CrossRefGoogle Scholar
  53. Yang X, Wang Y (2008) Photocatalytic effect on plasmid DNA damage under different UV irradiation time. Build Environ 43:253–257CrossRefGoogle Scholar
  54. Yurdakal S, Loddo V, Bayarri Ferrer B, Palmisano G, Augugliaro V, Gimenez Farreras J (2007) Optical properties of TiO2 suspensions: influence of pH and powder concentration on mean particle size. Ind Eng Chem Res 46:7620–7626CrossRefGoogle Scholar
  55. Zhu H, Jiang R, Xiao L, Chang Y, Guan Y, Li X, Zeng G (2009) Photocatalytic decolorization and degradation of Congo red on innovative crosslinked chitosan/nano CdS composite catalyst under visible light irradiation. J Hazard Mater 169:933–940CrossRefGoogle Scholar
  56. Zucca P, Neves C, Simões M-M, Neves M-D-G-P, Cocco G, Sanjust E (2016) Immobilized lignin peroxidase-like metalloporphyrins as reusable catalysts in oxidative bleaching of industrial dyes. Molecules 21:964CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jayaseelan Arun
    • 1
  • Vargees Felix
    • 1
  • Marudai Joselyn Monica
    • 1
  • Kannappan Panchamoorthy Gopinath
    • 1
    Email author
  1. 1.Department of Chemical EngineeringSSN College of EngineeringKalavakkamIndia

Personalised recommendations