Advertisement

Clay-Based Nanocomposites: Potential Materials for Water Treatment Applications

  • Faraan Fareed
  • M. Ibrar
  • Yaseen Ayub
  • Rabia Nazir
  • Lubna Tahir
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Water treatment with its current level of pollution and increased complexity of pollutants has become a major concern and grand challenge for ensuring sustainability of water nowadays. Nanoclays and their composites have played an increasingly important role in dealing with these multifaceted pollution perspectives. These clay minerals exist in various types having basic structure of aluminosilicates but vary in their properties like cation-exchange capacity, swelling tendency, surface area, and chemical and mechanical strengths that directly or indirectly impact their adsorption capacity. This chapter reviews and summarizes the recent technological advancements circling around the nanoclays, nano-organoclays, and their nanocomposites focusing on the mechanistic ways that affect the adsorption of pollutants from the aqueous media. The modifications implied to these nanoclays have extended their applications by enhancing their properties resulting in strong ability to sorb organic, inorganic, and even biological impurities in potable as well as wastewater.

Keywords

Organo-nanoclays Nanocomposites Adsorption Organic contaminants Inorganic contaminants 

References

  1. Abbas A, Sallam AS, Usman AR, Al-Wabel MI (2017) Organoclay-based nanoparticles from montmorillonite and natural clay deposits: synthesis characteristics and application for MTBE removal. Appl Clay Sci 142:21–29CrossRefGoogle Scholar
  2. Acisli O, Khataee A, Karaca S, Sheydaei M (2016) Modification of nanosized natural montmorillonite for ultrasound-enhanced adsorption of Acid Red 17. Ultrason Sonochem 31:116–121PubMedCrossRefPubMedCentralGoogle Scholar
  3. Amil Usmani M, Khan I, Bhat AH, Pillai RS, Ahmad N, Mohamad Haafiz KM, Oves M (2017) Current trend in the application of nanoparticles for waste water treatment and purification: a review. Curr Org Synth 14(2):206–226CrossRefGoogle Scholar
  4. Bagchi B, Kar S, Dey SK, Bhandary S, Roy D, Mukhopadhyay TK, Nandy P (2013) In situ synthesis and antibacterial activity of copper nanoparticle loaded natural montmorillonite clay based on contact inhibition and ion release. Colloids Surf B Biointerfaces 108:358–365PubMedCrossRefPubMedCentralGoogle Scholar
  5. Ballav N, Choi HJ, Mishra SB, Maity A (2014) Polypyrrole-coated halloysite nanotube clay nanocomposite: synthesis characterization and Cr (VI) adsorption behaviour. Appl Clay Sci 102:60–70CrossRefGoogle Scholar
  6. Belessi V, Lambropoulou D, Konstantinou I, Katsoulidis A, Pomonis P, Petridis D, Albanis T (2007) Structure and photocatalytic performance of TiO2/clay nanocomposites for the degradation of dimethachlor. Appl Catal B 73(3–4):292–299CrossRefGoogle Scholar
  7. Bergaya F, Lagaly G (2013) Handbook of clay science. Elsevier Science, Amsterdam; OxfordGoogle Scholar
  8. Bergaya F, Jaber M, Lambert JF (2012) Clays and clay minerals as layered nanofillers for (bio) polymers. In: Averous L, Pollet E (eds) Environmental silicate nano-biocomposites. Springer, London, pp 41–75CrossRefGoogle Scholar
  9. Bhattacharyya KG, Gupta SS (2008) Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv Colloid Interf Sci 140(2):114–131CrossRefGoogle Scholar
  10. Bhattacharyya R, Ray SK (2015) Removal of Congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol. Chem Eng J 260:269–283CrossRefGoogle Scholar
  11. Bleiman N, Mishael YG (2010) Selenium removal from drinking water by adsorption to chitosan–clay composites and oxides: batch and columns tests. J Hazard Mater 183(1–3):590–595PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bouna L, Rhouta B, Amjoud M, Maury F, Lafont MC, Jada A, Daoudi L (2011) Synthesis characterization and photocatalytic activity of TiO2 supported natural palygorskite microfibers. Appl Clay Sci 52(3):301–311CrossRefGoogle Scholar
  13. Bruna J, Peñaloza A, Guarda A, Rodríguez F, Galotto M (2012) Development of MtCu2+/LDPE nanocomposites with antimicrobial activity for potential use in food packaging. Appl Clay Sci 58:79–87CrossRefGoogle Scholar
  14. Bulut Y, Karaer H (2015) Adsorption of methylene blue from aqueous solution by crosslinked chitosan/bentonite composite. J Dispers Sci Technol 36(1):61–67CrossRefGoogle Scholar
  15. Cadena F, Rizvi R, Peters RW (1990) Feasibility studies for the removal of heavy metals from solution using tailored bentonite. Paper presented at the Hazardous and industrial wastes. Proceedings of the mid-Atlantic industrial waste conference, Drexel UniversityGoogle Scholar
  16. Celis R, Adelino M, Hermosin M, Cornejo J (2012) Montmorillonite–chitosan bionanocomposites as adsorbents of the herbicide clopyralid in aqueous solution and soil/water suspensions. J Hazard Mater 209:67–76PubMedCrossRefGoogle Scholar
  17. Chang MY, Juang RS (2004) Adsorption of tannic acid humic acid and dyes from water using the composite of chitosan and activated clay. J Colloid Interface Sci 278(1):18–25PubMedCrossRefGoogle Scholar
  18. Chen W, Liu HC (2014) Adsorption of sulfate in aqueous solutions by organo-nano-clay: adsorption equilibrium and kinetic studies. J Cent South Univ 21(5):1974–1981CrossRefGoogle Scholar
  19. Chen H, Zhao J (2009) Adsorption study for removal of Congo red anionic dye using organo-attapulgite. Adsorption 15(4):381–389CrossRefGoogle Scholar
  20. Chen Q, Wu P, Dang Z, Zhu N, Li P, Wu J, Wang X (2010) Iron pillared vermiculite as a heterogeneous photo-Fenton catalyst for photocatalytic degradation of azo dye reactive brilliant orange X-GN. Separ Purif Technol 71(3):315–323CrossRefGoogle Scholar
  21. Chen D, Chen J, Luan X, Ji H, Xia Z (2011a) Characterization of anion–cationic surfactants modified montmorillonite and its application for the removal of methyl orange. Chem Eng J 171(3):1150–1158CrossRefGoogle Scholar
  22. Chen LF, Liang HW, Lu Y, Cui CH, Yu SH (2011b) Synthesis of an attapulgite clay@carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water. Langmuir 27(14):8998–9004PubMedCrossRefGoogle Scholar
  23. Chen J, Hong X, Xie Q, Li D, Zhang Q (2014) Sepiolite fiber oriented-polypyrrole nanofibers for efficient chromium (VI) removal from aqueous solution. J Chem Eng Data 59(7):2275–2282CrossRefGoogle Scholar
  24. Chen J, Hong X, Xie Q, Tian M, Li K, Zhang Q (2015) Exfoliated polypyrrole/montmorillonite nanocomposite with flake-like structure for Cr (VI) removal from aqueous solution. Res Chem Intermed 41(12):9655–9671CrossRefGoogle Scholar
  25. Chen J, Yan L-g, Yu H-q, Li S, Qin L-l, Liu G, Du B (2016a) Efficient removal of phosphate by facile prepared magnetic diatomite and illite clay from aqueous solution. Chem Eng J 287:162–172CrossRefGoogle Scholar
  26. Chen L, Zhou CH, Fiore S, Tong DS, Zhang H, Li C, Yu WH (2016b) Functional magnetic nanoparticle/clay mineral nanocomposites: preparation magnetism and versatile applications. Appl Clay Sci 127:143–163CrossRefGoogle Scholar
  27. De Paiva LB, Morales AR, Díaz FRV (2008) Organoclays: properties preparation and applications. Appl Clay Sci 42(1–2):8–24CrossRefGoogle Scholar
  28. Ding X, An T, Li G, Zhang S, Chen J, Yuan J, Fu J (2008) Preparation and characterization of hydrophobic TiO2 pillared clay: the effect of acid hydrolysis catalyst and doped Pt amount on photocatalytic activity. J Colloid Interface Sci 320(2):501–507PubMedCrossRefGoogle Scholar
  29. Dou B, Dupont V, Pan W, Chen B (2011) Removal of aqueous toxic Hg (II) by synthesized TiO2 nanoparticles and TiO2/montmorillonite. Chem Eng J 166(2):631–638CrossRefGoogle Scholar
  30. Duan J, Liu R, Chen T, Zhang B, Liu J (2012) Halloysite nanotube-Fe3O4 composite for removal of methyl violet from aqueous solutions. Desalination 293:46–52CrossRefGoogle Scholar
  31. Edition F (2011) Guidelines for drinking-water quality. WHO Chron 38(4):104–108Google Scholar
  32. Encyclopaedia Britannica (1998) In: McHenry R (ed) Encyclopaedia Britannica. Encyclopaedia Britannica, Inc.Google Scholar
  33. Eren E, Afsin B, Onal Y (2009) Removal of lead ions by acid activated and manganese oxide-coated bentonite. J Hazard Mater 161(2–3):677–685PubMedCrossRefPubMedCentralGoogle Scholar
  34. Feng J, Hu X, Yue PL, Zhu HY, Lu GQ (2003) Degradation of azo-dye orange II by a photoassisted Fenton reaction using a novel composite of iron oxide and silicate nanoparticles as a catalyst. Ind Eng Chem Res 42(10):2058–2066CrossRefGoogle Scholar
  35. Feng J, Wong RS, Hu X, Yue PL (2004) Discoloration and mineralization of Orange II by using Fe3+-doped TiO2 and bentonite clay-based Fe nanocatalysts. Catal Today 98(3):441–446CrossRefGoogle Scholar
  36. Gámiz B, Hermosín M, Cornejo J, Celis R (2015) Hexadimethrine-montmorillonite nanocomposite: characterization and application as a pesticide adsorbent. Appl Surf Sci 332:606–613CrossRefGoogle Scholar
  37. Ganigar R, Rytwo G, Gonen Y, Radian A, Mishael YG (2010) Polymer–clay nanocomposites for the removal of trichlorophenol and trinitrophenol from water. Appl Clay Sci 49(3):311–316CrossRefGoogle Scholar
  38. Gao Z, Peng X, Zhang H, Luan Z, Fan B (2009) Montmorillonite–Cu (II)/Fe (III) oxides magnetic material for removal of cyanobacterial Microcystis aeruginosa and its regeneration. Desalination 247(1–3):337–345CrossRefGoogle Scholar
  39. Girase B, Depan D, Shah J, Xu W, Misra R (2011) Silver–clay nanohybrid structure for effective and diffusion-controlled antimicrobial activity. Mater Sci Eng C 31(8):1759–1766CrossRefGoogle Scholar
  40. Grim RE (1962) Clay mineralogy: the clay mineral composition of soils and clays is providing an understanding of their properties. Science 135(3507):890–898PubMedCrossRefPubMedCentralGoogle Scholar
  41. Grim R, Guven N (1978) Bentonite: geology, clay mineralogy properties and users. Elsevier Science Publishing, New YorkGoogle Scholar
  42. Hassani A, Khataee A, Karaca S, Karaca M, Kıranşan M (2015a) Adsorption of two cationic textile dyes from water with modified nanoclay: a comparative study by using central composite design. J Environ Chem Eng 3(4):2738–2749CrossRefGoogle Scholar
  43. Hassani A, Khataee A, Karaca S, Shirzad-Siboni M (2015b) Surfactant-modified montmorillonite as a nanosized adsorbent for removal of an insecticide: kinetic and isotherm studies. Environ Technol 36(24):3125–3135PubMedCrossRefPubMedCentralGoogle Scholar
  44. Hassani A, Soltani RDC, Kıranşan M, Karaca S, Karaca C, Khataee A (2016) Ultrasound-assisted adsorption of textile dyes using modified nanoclay: central composite design optimization. Korean J Chem Eng 33(1):178–188CrossRefGoogle Scholar
  45. Hong SI, Rhim JW (2008) Antimicrobial activity of organically modified nano-clays. J Nanosci Nanotechnol 8(11):5818–5824PubMedCrossRefPubMedCentralGoogle Scholar
  46. Hundáková M, Valášková M, Samlíková M, Pazdziora E (2014) Vermiculite with Ag and Cu used as an antibacterial nanofiller in polyethylene/vermikulit S Ag A Cu Použitý Jako Antibakteriální Nanoplnivo V Polyethylenu. GeoSci Eng 60(3):28–36CrossRefGoogle Scholar
  47. Ismadji S, Soetaredjo FE, Ayucitra A (2015) Clay materials for environmental remediation. Springer International Publishing, ChamCrossRefGoogle Scholar
  48. Jiang JQ, Cooper C (2003) Preparation of modified clay adsorbents for the removal of humic acid. Environ Eng Sci 20(6):581–586CrossRefGoogle Scholar
  49. Kaplan M, Kasgoz H (2011) Hydrogel nanocomposite sorbents for removal of basic dyes. Polym Bull 67(7):1153–1168CrossRefGoogle Scholar
  50. Kasama T, Watanabe Y, Yamada H, Murakami T (2004) Sorption of phosphates on Al-pillared smectites and mica at acidic to neutral pH. Appl Clay Sci 25(3–4):167–177CrossRefGoogle Scholar
  51. Kaşgöz H, Durmus A (2008) Dye removal by a novel hydrogel-clay nanocomposite with enhanced swelling properties. Polym Adv Technol 19(7):838–845CrossRefGoogle Scholar
  52. Kaşgöz H, Durmuş A, Kaşgöz A (2008) Enhanced swelling and adsorption properties of AAm-AMPSNa/clay hydrogel nanocomposites for heavy metal ion removal. Polym Adv Technol 19(3):213–220CrossRefGoogle Scholar
  53. Khalaf A, Yehia A, Temraz MM (2016) A short review on hybrid clay/rubber nanocomposites. KGK KAUT Gummi Kunst 69(6):22–32Google Scholar
  54. Khataee A, Sheydaei M, Hassani A, Taseidifar M, Karaca S (2015) Sonocatalytic removal of an organic dye using TiO2/Montmorillonite nanocomposite. Ultrason Sonochem 22:404–411PubMedCrossRefPubMedCentralGoogle Scholar
  55. Kiani G, Dostali M, Rostami A, Khataee AR (2011) Adsorption studies on the removal of Malachite Green from aqueous solutions onto halloysite nanotubes. Appl Clay Sci 54(1):34–39Google Scholar
  56. Kohay H, Izbitski A, Mishael YG (2015) Developing polycation-clay sorbents for efficient filtration of diclofenac: effect of dissolved organic matter and comparison to activated carbon. Environ Sci Technol 49(15):9280–9288PubMedCrossRefPubMedCentralGoogle Scholar
  57. Kryuchkova M, Danilushkina A, Lvov Y, Fakhrullin R (2016) Evaluation of toxicity of nanoclays and graphene oxide in vivo: a Paramecium caudatum study. Environ Sci Nano 3(2):442–452CrossRefGoogle Scholar
  58. Küçükselek Ç (2007) Investigation of applicability of clay minerals in wastewater treatment. Graduate School of Natural and Applied Sciences. Dokul Eylül University. pp 9–26Google Scholar
  59. Kumar ASK, Kalidhasan S, Rajesh V, Rajesh N (2011) Application of cellulose-clay composite biosorbent toward the effective adsorption and removal of chromium from industrial wastewater. Ind Eng Chem Res 51(1):58–69CrossRefGoogle Scholar
  60. Lee SM, Tiwari D (2012) Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: an overview. Appl Clay Sci 59:84–102CrossRefGoogle Scholar
  61. Li P, Kim NH, Yoo GH, Lee JH (2009) Poly (acrylamide/laponite) nanocomposite hydrogels: swelling and cationic dye adsorption properties. J Appl Polym Sci 111(4):1786–1798CrossRefGoogle Scholar
  62. Li R, Wang JJ, Zhou B, Awasthi MK, Ali A, Zhang Z, Mahar A (2016) Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios. Sci Total Environ 559:121–129PubMedCrossRefPubMedCentralGoogle Scholar
  63. Lim GO, Jang SA, Song KB (2010) Physical and antimicrobial properties of Gelidium corneum/nano-clay composite film containing grapefruit seed extract or thymol. J Food Eng 98(4):415–420CrossRefGoogle Scholar
  64. Liu L, Wan Y, Xie Y, Zhai R, Zhang B, Liu J (2012) The removal of dye from aqueous solution using alginate-halloysite nanotube beads. Chem Eng J 187:210–216CrossRefGoogle Scholar
  65. Ma J, Zou J, Li L, Yao C, Kong Y, Cui B, Li D (2014) Nanocomposite of attapulgite–Ag3PO4 for Orange II photodegradation. Appl Catal B 144:36–40CrossRefGoogle Scholar
  66. Mahdavinia GR, Asgari A (2013) Synthesis of kappa-carrageenan-g-poly (acrylamide)/sepiolite nanocomposite hydrogels and adsorption of cationic dye. Polym Bull 70(8):2451–2470CrossRefGoogle Scholar
  67. Meng N, Zhou NL, Zhang SQ, Shen J (2009) Synthesis and antimicrobial activities of polymer/montmorillonite–chlorhexidine acetate nanocomposite films. Appl Clay Sci 42(3–4):667–670CrossRefGoogle Scholar
  68. Meshram S, Limaye R, Ghodke S, Nigam S, Sonawane S, Chikate R (2011) Continuous flow photocatalytic reactor using ZnO–bentonite nanocomposite for degradation of phenol. Chem Eng J 172(2–3):1008–1015CrossRefGoogle Scholar
  69. Mishra A, Mehta A, Sharma M, Basu S (2017) Enhanced heterogeneous photodegradation of VOC and dye using microwave synthesized TiO2/clay nanocomposites: a comparison study of different type of clays. J Alloys Compd 694:574–580CrossRefGoogle Scholar
  70. Mokhtar M (2017) Application of synthetic layered sodium silicate magadiite nanosheets for environmental remediation of methylene blue dye in water. Materials 10(7):760PubMedCentralCrossRefGoogle Scholar
  71. Motshekga SC, Ray SS, Onyango MS, Momba MN (2013) Microwave-assisted synthesis characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay. J Hazard Mater 262:439–446PubMedCrossRefPubMedCentralGoogle Scholar
  72. Moussout H, Ahlafi H, Aazza M, El Akili C (2018) Performances of local chitosan and its nanocomposite 5% Bentonite/Chitosan in the removal of chromium ions (Cr (VI)) from wastewater. Int J Biol Macromol 108:1063–1073PubMedCrossRefPubMedCentralGoogle Scholar
  73. Na P, Jia X, Yuan B, Li Y, Na J, Chen Y, Wang L (2010) Arsenic adsorption on Ti-pillared montmorillonite. J Chem Technol Biotechnol 85(5):708–714CrossRefGoogle Scholar
  74. Narayanan DP, Gopalakrishnan A, Yaakob Z, Sugunan S, Narayanan BN (2017) A facile synthesis of clay—graphene oxide nanocomposite catalysts for solvent free multicomponent Biginelli reaction. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2017.04.011
  75. Nazir MS, Kassim MH, Mohapatra L, Gilani MA, Raza MR, Majeed K (2016) Characteristic properties of nanoclays and characterization of nanoparticulates and nanocomposites. In: Nanoclay reinforced polymer composites. Springer, Singapore, pp 35–55CrossRefGoogle Scholar
  76. Nikkhah AA, Zilouei H, Asadinezhad A, Keshavarz A (2015) Removal of oil from water using polyurethane foam modified with nanoclay. Chem Eng J 262:278–285CrossRefGoogle Scholar
  77. Olad A, Azhar FF, Shargh M, Jharfi S (2014) Application of response surface methodology for modeling of reactive dye removal from solution using starch-montmorillonite/polyaniline nanocomposite. Polym Eng Sci 54(7):1595–1607CrossRefGoogle Scholar
  78. Pandey S, Mishra SB (2011) Organic–inorganic hybrid of chitosan/organoclay bionanocomposites for hexavalent chromium uptake. J Colloid Interface Sci 361(2):509–520PubMedCrossRefPubMedCentralGoogle Scholar
  79. Patel HA, Somani RS, Bajaj HC, Jasra RV (2006) Nanoclays for polymer nanocomposites paints inks greases and cosmetics formulations drug delivery vehicle and waste water treatment. Bull Mater Sci 29(2):133–145CrossRefGoogle Scholar
  80. Peng Q, Liu M, Zheng J, Zhou C (2015) Adsorption of dyes in aqueous solutions by chitosan–halloysite nanotubes composite hydrogel beads. Microporous Mesoporous Mater 201:190–201CrossRefGoogle Scholar
  81. Petrik L, Missengue R, Fatoba O, Tuffin M, Sachs J (2012) Silver/zeolite nano composite-based clay filters for water disinfection. Water Research Commission WRC report (KV 297/12) ISSN 1790670070Google Scholar
  82. Piri S, Zanjani ZA, Piri F, Zamani A, Yaftian M, Davari M (2016) Potential of polyaniline modified clay nanocomposite as a selective decontamination adsorbent for Pb (II) ions from contaminated waters; kinetics and thermodynamic study. J Environ Health Sci Eng 14(1):20PubMedPubMedCentralCrossRefGoogle Scholar
  83. Pourabolghasem H, Ghorbanpour M, Shayegh R (2016) Antibacterial activity of copper-doped montmorillonite nanocomposites prepared by alkaline ion exchange method. J Phys Sci 27(2):1–8CrossRefGoogle Scholar
  84. Rafati L, Ehrampoush M, Rafati A, Mokhtari M, Mahvi A (2018) Removal of ibuprofen from aqueous solution by functionalized strong nano-clay composite adsorbent: kinetic and equilibrium isotherm studies. Int J Environ Sci Technol 15(3):513–524CrossRefGoogle Scholar
  85. Rafiei H, Shirvani M, Ogunseitan O (2016) Removal of lead from aqueous solutions by a poly (acrylic acid)/bentonite nanocomposite. Appl Water Sci 6(4):331–338CrossRefGoogle Scholar
  86. Ramesh A, Hasegawa H, Maki T, Ueda K (2007) Adsorption of inorganic and organic arsenic from aqueous solutions by polymeric Al/Fe modified montmorillonite. Sep Purif Technol 56(1):90–100CrossRefGoogle Scholar
  87. Ratanarat K, Nithitanakul M, Martin D, Magaraphan R (2003) Polymer-layer silicate nanocomposites: linear PEO and highly branched dendrimer for organic wastewater treatment. Rev Adv Mater Sci 5(3):187–192Google Scholar
  88. Rhim JW, Hong SI, Park HM, Ng PK (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54(16):5814–5822PubMedCrossRefPubMedCentralGoogle Scholar
  89. Rhim JW, Lee SB, Hong SI (2011) Preparation and characterization of agar/clay nanocomposite films: the effect of clay type. J Food Sci 76(3):21–28CrossRefGoogle Scholar
  90. Rivera-Jimenez SM, Lehner MM, Cabrera-Lafaurie WA, Hernández-Maldonado AJ (2011) Removal of naproxen salicylic acid clofibric acid and carbamazepine by water phase adsorption onto inorganic–organic-intercalated bentonites modified with transition metal cations. Environ Eng Sci 28(3):171–182CrossRefGoogle Scholar
  91. Setshedi KZ, Bhaumik M, Songwane S, Onyango MS, Maity A (2013) Exfoliated polypyrrole-organically modified montmorillonite clay nanocomposite as a potential adsorbent for Cr (VI) removal. Chem Eng J 222:186–197CrossRefGoogle Scholar
  92. Shabeer TA, Saha A, Gajbhiye V, Gupta S, Manjaiah K, Varghese E (2014) Simultaneous removal of multiple pesticides from water: effect of organically modified clays as coagulant aid and adsorbent in coagulation–flocculation process. Environ Technol 35(20):2619–2627PubMedCrossRefGoogle Scholar
  93. Sharafi MM, Bazgir S, Tamizifar M, Nemati A (2010) Adsorption of petroleum hydrocarbons on organoclayGoogle Scholar
  94. Shirsath S, Hage A, Zhou M, Sonawane S, Ashokkumar M (2011) Ultrasound assisted preparation of nanoclay Bentonite-FeCo nanocomposite hybrid hydrogel: a potential responsive sorbent for removal of organic pollutant from water. Desalination 281:429–437CrossRefGoogle Scholar
  95. Shirzad-Siboni M, Khataee A, Hassani A, Karaca S (2015) Preparation characterization and application of a CTAB-modified nanoclay for the adsorption of an herbicide from aqueous solutions: kinetic and equilibrium studies. C R Chim 18(2):204–214CrossRefGoogle Scholar
  96. Shokri E, Yegani R, Pourabbas B, Kazemian N (2016) Preparation and characterization of polysulfone/organoclay adsorptive nanocomposite membrane for arsenic removal from contaminated water. Appl Clay Sci 132:611–620CrossRefGoogle Scholar
  97. Shu Z, Zhang Y, Yang Q, Yang H (2017) Halloysite nanotubes supported Ag and ZnO nanoparticles with synergistically enhanced antibacterial activity. Nanoscale Res Lett 12(1):135PubMedPubMedCentralCrossRefGoogle Scholar
  98. Sohrabnezhad S, Moghaddam MM, Salavatiyan T (2014) Synthesis and characterization of CuO–montmorillonite nanocomposite by thermal decomposition method and antibacterial activity of nanocomposite. Spectrochim Acta Part A Mol Biomol Spectrosc 125:73–78CrossRefGoogle Scholar
  99. Sonawane S, Chaudhari P, Ghodke S, Ambade S, Gulig S, Mirikar A, Bane A (2008) Combined effect of ultrasound and nanoclay on adsorption of phenol. Ultrason Sonochem 15(6):1033–1037PubMedCrossRefGoogle Scholar
  100. Sonawane S, Chaudhari P, Ghodke S, Phadtare S, Meshram S (2009) Ultrasound assisted adsorption of basic dye onto organically modified bentonite (nanoclay). J Sci Ind Res 68:162–167Google Scholar
  101. Sothornvit R, Rhim JW, Hong SI (2009) Effect of nano-clay type on the physical and antimicrobial properties of whey protein isolate/clay composite films. J Food Eng 91(3):468–473CrossRefGoogle Scholar
  102. Srinivasan R (2011) Advances in application of natural clay and its composites in removal of biological organic and inorganic contaminants from drinking water. Adv Mater Sci Eng 2011:872531CrossRefGoogle Scholar
  103. Taleb MFA, Hegazy DE, Ismail SA (2012) Radiation synthesis characterization and dye adsorption of alginate–organophilic montmorillonite nanocomposite. Carbohyd Polym 87(3):2263–2269CrossRefGoogle Scholar
  104. Uğurlu M, Karaoğlu M (2011) TiO2 supported on sepiolite: preparation structural and thermal characterization and catalytic behaviour in photocatalytic treatment of phenol and lignin from olive mill wastewater. Chem Eng J 166(3):859–867CrossRefGoogle Scholar
  105. Ul-Islam M, Khan T, Khattak WA, Park JK (2013) Bacterial cellulose-MMTs nanoreinforced composite films: novel wound dressing material with antibacterial properties. Cellulose 20(2):589–596CrossRefGoogle Scholar
  106. Unuabonah EI, Taubert A (2014) Clay–polymer nanocomposites (CPNs): adsorbents of the future for water treatment. Appl Clay Sci 99:83–92CrossRefGoogle Scholar
  107. Unuabonah E, Olu-Owolabi B, Adebowale K, Yang L (2008) Removal of lead and cadmium ions from aqueous solution by polyvinyl alcohol-modified kaolinite clay: a novel nano-clay adsorbent. Adsor Sci Technol 26(6):383–405CrossRefGoogle Scholar
  108. Urbano BF, Rivas BL, Martinez F, Alexandratos SD (2012) Water-insoluble polymer–clay nanocomposite ion exchange resin based on N-methyl-d-glucamine ligand groups for arsenic removal. React Funct Polym 72(9):642–649CrossRefGoogle Scholar
  109. Wang L, Wang A (2007) Adsorption characteristics of Congo Red onto the chitosan/montmorillonite nanocomposite. J Hazard Mater 147(3):979–985PubMedCrossRefGoogle Scholar
  110. Wang L, Zhang J, Wang A (2008a) Removal of methylene blue from aqueous solution using chitosan-g-poly (acrylic acid)/montmorillonite superadsorbent nanocomposite. Colloid Surf A Physicochem Eng Asp 322(1–3):47–53CrossRefGoogle Scholar
  111. Wang X, Du Y, Yang J, Tang Y, Luo J (2008b) Preparation characterization and antimicrobial activity of quaternized chitosan/organic montmorillonite nanocomposites. J Biomed Mater Res Part A 84(2):384–390CrossRefGoogle Scholar
  112. Wang MC, Lin JJ, Tseng HJ, Hsu SH (2011) Characterization antimicrobial activities and biocompatibility of organically modified clays and their nanocomposites with polyurethane. ACS Appl Mater Interfaces 4(1):338–350PubMedCrossRefPubMedCentralGoogle Scholar
  113. Wang X, Yang L, Zhang J, Wang C, Li Q (2014) Preparation and characterization of chitosan–poly (vinyl alcohol)/bentonite nanocomposites for adsorption of Hg (II) ions. Chem Eng J 251:404–412CrossRefGoogle Scholar
  114. Wang Z, Wang C, Wang P, Qian J, Hou J, Ao Y, Wu B (2015) The performance of chitosan/montmorillonite nanocomposite during the flocculation and floc storage processes of Microcystis aeruginosa cells. Environ Sci Poll Res 22(14):11148–11161CrossRefGoogle Scholar
  115. Xi Y, Mallavarapu M, Naidu R (2010) Preparation characterization of surfactants modified clay minerals and nitrate adsorption. Appl Clay Sci 48(1–2):92–96CrossRefGoogle Scholar
  116. Xie Y, Qian D, Wu D, Ma X (2011) Magnetic halloysite nanotubes/iron oxide composites for the adsorption of dyes. Chem Eng J 168(2):959–963CrossRefGoogle Scholar
  117. Yahyaei B, Azizian S, Mohammadzadeh A, Pajohi-Alamoti M (2014) Preparation of clay/alumina and clay/alumina/Ag nanoparticle composites for chemical and bacterial treatment of waste water. Chem Eng J 247:16–24CrossRefGoogle Scholar
  118. Yan L, Xu Y, Yu H, Xin X, Wei Q, Du B (2010) Adsorption of phosphate from aqueous solution by hydroxy-aluminum hydroxy-iron and hydroxy-iron–aluminum pillared bentonites. J Hazard Mater 179(1–3):244–250PubMedCrossRefPubMedCentralGoogle Scholar
  119. Yang Y, Han S, Fan Q, Ugbolue SC (2005) Nanoclay and modified nanoclay as sorbents for anionic cationic and nonionic dyes. Text Res J 75(8):622–627CrossRefGoogle Scholar
  120. Yao C, Xu Y, Kong Y, Liu W, Wang W, Wang Z, Ji J (2012) Polypyrrole/palygorskite nanocomposite: a new chromate collector. Appl Clay Sci 67:32–35CrossRefGoogle Scholar
  121. Yin J, Deng C, Yu Z, Wang X (2018) Effective removal of lead ions from aqueous solution using nano illite/smectite clay: isotherm kinetic and thermodynamic modeling of adsorption. Water 10(2):210CrossRefGoogle Scholar
  122. Yuan G, Wu L (2007) Allophane nanoclay for the removal of phosphorus in water and wastewater. Sci Technol Adv Mater 8(1–2):60–62CrossRefGoogle Scholar
  123. Yuan P, Fan M, Yang D, He H, Liu D, Yuan A, Chen T (2009) Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr (VI)] from aqueous solutions. J Hazard Mater 166(2–3):821–829PubMedCrossRefGoogle Scholar
  124. Yuan P, Liu D, Fan M, Yang D, Zhu R, Ge F, He H (2010) Removal of hexavalent chromium [Cr (VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. J Hazard Mater 173(1–3):614–621PubMedCrossRefGoogle Scholar
  125. Yuan L, Huang D, Guo W, Yang Q, Yu J (2011) TiO2/montmorillonite nanocomposite for removal of organic pollutant. Appl Clay Sci 53(2):272–278CrossRefGoogle Scholar
  126. Zhang J, Zhang Y, Chen Y, Du L, Zhang B, Zhang H, … Wang K (2012) Preparation and characterization of novel polyethersulfone hybrid ultrafiltration membranes bending with modified halloysite nanotubes loaded with silver nanoparticles. Industrial & engineering chemistry research, 51(7):3081–3090CrossRefGoogle Scholar
  127. Zang L, Qiu J, Yang C, Sakai E (2016) Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization. Sci Rep 6:204–211Google Scholar
  128. Zhou Q, Gao Q, Luo W, Yan C, Ji Z, Duan P (2015) One-step synthesis of amino-functionalized attapulgite clay nanoparticles adsorbent by hydrothermal carbonization of chitosan for removal of methylene blue from wastewater. Colloid Surf A Physicochem Eng Asp 470:248–257CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Faraan Fareed
    • 1
  • M. Ibrar
    • 2
  • Yaseen Ayub
    • 3
  • Rabia Nazir
    • 4
  • Lubna Tahir
    • 3
  1. 1.Government College of ScienceLahorePakistan
  2. 2.Lahore Garrison UniversityLahorePakistan
  3. 3.Government Islamia College Civil LinesLahorePakistan
  4. 4.Pakistan Council of Scientific and Industrial Research Labs ComplexApplied Chemistry Research CentreLahorePakistan

Personalised recommendations