Advertisement

The GLOBALJ Framework

  • Balázs Bánhelyi
  • Tibor Csendes
  • Balázs Lévai
  • László Pál
  • Dániel Zombori
Chapter
Part of the SpringerBriefs in Optimization book series (BRIEFSOPTI)

Abstract

The GLOBAL optimization method was designed in an era when researchers had to take into account the hardware limitations that meant much more difficulty back then, if they worked on practical optimization methods. The algorithm GLOBAL and all its implementations including the latest one in MATLAB have been carrying over workarounds of these past problems that are obsolete nowadays. The algorithm has no implementation on any of the modern programming platforms, while the available ones are not easy to use, customize, or integrate into larger software environments. This chapter introduces the GLOBALJ framework, a new, modularized JAVA implementation of an improved GLOBAL algorithm.

References

  1. 1.
  2. 12.
    Csendes, T.: Nonlinear parameter estimation by global optimization-efficiency and reliability. Acta Cybernet. 8, 361–370 (1988)MathSciNetzbMATHGoogle Scholar
  3. 15.
    Csendes, T., Pál, L., Sendin, J.O.H., Banga, J.R.: The GLOBAL optimization method revisited. Optim. Lett. 2, 445–454 (2008)MathSciNetCrossRefGoogle Scholar
  4. 16.
    Csete, M., Szekeres, G., Bánhelyi, B., Szenes, A., Csendes, T., Szabo, G.: Optimization of Plasmonic structure integrated single-photon detector designs to enhance absorptance. In: Advanced Photonics 2015, JM3A.30 (2015)Google Scholar
  5. 31.
    JScience: http://jscience.org (2017)
  6. 32.
  7. 33.
    JQuantLib: http://www.jquantlib.org (2017)
  8. 45.
    Murtagh, F., Contreras, P.: Algorithms for hierarchical clustering: an overview. Wiley Interdisc. Rew.: Data Min. Knowl. Disc. 2, 86–97 (2012)Google Scholar
  9. 47.
    NumPy: http://www.numpy.org (2017)
  10. 57.
  11. 62.
    Rokach, L., Maimon, O.: Clustering Methods. Data Mining and Knowledge Discovery Handbook, pp. 321–352. Springer, New York (2005)Google Scholar
  12. 64.
    SciPy: https://www.scipy.org (2017)
  13. 69.
    The MathWorks, Inc.: https://www.mathworks.com/
  14. 70.
  15. 73.

Copyright information

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Balázs Bánhelyi
    • 1
  • Tibor Csendes
    • 1
  • Balázs Lévai
    • 2
  • László Pál
    • 3
  • Dániel Zombori
    • 1
  1. 1.Department of Computational OptimizationUniversity of SzegedSzegedHungary
  2. 2.NNG IncSzegedHungary
  3. 3.Sapientia Hungarian University of TransylvaniaMiercurea CiucRomania

Personalised recommendations