Theoretical Background

  • Jacob (Theo) Kloprogge
Part of the Springer Mineralogy book series (MINERAL)


This chapter gives a general introduction into the different types of spectroscopic methods used to study the kaolin minerals and their modifications. The first group of techniques involve vibrational spectroscopic methods such as Mid- and Near-infrared spectroscopy (MIR and NIR) and Raman spectroscopy. A special technique is Infrared emission spectroscopy that allows the observation of phase changes with increasing temperature in situ using the emission of the sample itself as the IR source. This is followed by solid-state Magic-Angle-Spinning Nuclear Magnetic Resonance Spectroscopy (MAS-NMR), Mössbauer spectroscopy and Electron Paramagnetic Resonance spectroscopy (EPR, also known as Electron Spin Resonance spectroscopy ESR). These three methods use magnetic properties to obtain detailed information regarding the local environment of specific atoms.


  1. Coblenz WW (1908) Part VII emission spectra. In: Investigations of Infrared Spectra, vol Publication No 97. The Carnegie Institute of Washington, Washington, DC, p 183Google Scholar
  2. Coblenz WW (1912) Selective radiation from various substances, IV. Bull Bur Stand 9:81–117CrossRefGoogle Scholar
  3. Frost RL (1996) The application of Raman microscopy to the study of minerals. Chem Aust 63:446–448Google Scholar
  4. Gordon R (1956) The emissivity of transparent materials. J Am Ceram Soc 39:278–287CrossRefGoogle Scholar
  5. Hofmann S (2013) Auger- and X-ray photoelectron spectroscopy in materials science, Springer Series in Surface Sciences, vol 49. Springer, HeidelbergGoogle Scholar
  6. Hvistendahl J, Rytter E, Øye HA (1983) IR emission spectroscopy of molten salts and other liquids using thick samples as reference. Appl Spectrosc 37:182–187CrossRefGoogle Scholar
  7. Kapff SF (1946) Infrared emission spectra of liquids. Science 105:274–275CrossRefGoogle Scholar
  8. Kapff SF (1948) Infrared emission spectra of hot liquids. J Chem Phys 16:446–453CrossRefGoogle Scholar
  9. Kloprogge JT, Frost RL (1998) De toepassing van Raman spectroscopie in de bestudering van kleimineralen. Klei, Glas en Keramiek 19:22–25Google Scholar
  10. Low MJD (1965) Infra-red emission spectra of minerals. Nature 206:1089–1090CrossRefGoogle Scholar
  11. McMahon HO (1950) Thermal radiation from partially transparent reflecting bodies. J Opt Soc Am 410:376–380CrossRefGoogle Scholar
  12. Planck M (1901) Ueber das gesetz der Energieverteilung im Normalspektrum. Annales Physik, 4th series (vierte folge):553–563Google Scholar
  13. Rossman GD (1988) Vibrational spectroscopy of hydrous components. In: Hawthorne FC (ed) Spectroscopic methods in mineralogy and geology, Reviews in Mineralogy, vol 18. Mineralogical Society of America, Washington, DC, pp 193–206CrossRefGoogle Scholar
  14. Van der Heide P (2011) X-ray photoelectron spectroscopy: an introduction to principles and practices. Wiley-Blackwell, HobokenCrossRefGoogle Scholar
  15. Vassallo AM, Cole-Clarke PA, Pang LSK, Palmisano AJ (1992) Infrared emission spectroscopy of coal minerals and their thermal transformations. Appl Spectrosc 46(1):73–78CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jacob (Theo) Kloprogge
    • 1
    • 2
  1. 1.Department of ChemistryThe University of the Philippines VisayasMiag-aoPhilippines
  2. 2.School of Earth and Environmental SciencesThe University of QueenslandBrisbaneAustralia

Personalised recommendations