Machine Learning for Enhancement Land Cover and Crop Types Classification

  • Noureldin LabanEmail author
  • Bassam Abdellatif
  • Hala M. Ebeid
  • Howida A. Shedeed
  • Mohamed F. Tolba
Part of the Studies in Computational Intelligence book series (SCI, volume 801)


Big data collected from remote sensing satellites is creating new opportunities for modern development. Remote sensing big data are very complex in terms of their structural, spectral, and textual features according to various satellites generating them. Investigating the character of remote sensed big data becomes an essential need. Land cover and crop types classification are of great importance for monitoring agricultural production and land-use patterns. Many classification approaches have used different parameters settings. In this chapter, we investigate the modern classifiers using the most effective parameters to enhance the classification accuracy of the major crops and land covers that exist in Sentinel-2 satellite images for Fayoum Region of Egypt. Many crop types and major land-cover types are classified according to the Egypt region. This chapter investigates the k-Nearest Neighbor (k-NN), Artificial Neural Network (ANN), Support Vector Machine (SVM), and Random Forest (RF) supervised classifiers. The experimental results show that the SVM and the RF report more robust results. The k-NN reports the least accuracy especially for crop types. The RT, k-NN, ANN, and SVM record 92.7%, 92%, 92.1% and 94.4% respectively. The SVM classifier out-performs the k-NN, ANN and RF classifiers.


Artificial intelligence Crop-types classification Egypt Remote sensing (RS) Satellite images Sentinel-2 



This work was supported in part by the GEF/World Bank Project “Regional Co-ordination for Improved Water Resources Management and Capacity Building” alongside the National Authority for Remote, Sensing and Space Science, Egypt.


  1. 1.
    Delgado, J.C.M.: An Interoperability Framework and Distributed Platform for Fast Data Applications, pp. 3–39. Springer International Publishing, Cham (2016)Google Scholar
  2. 2.
    Guo, H., Wang, L., Liang, D.: Big earth data from space: a new engine for earth science. Sci. Bull. 61(7), 505–513 (2016)CrossRefGoogle Scholar
  3. 3.
    Birant, D., Yıldırım, P.: A Framework for Data Mining and Knowledge Discovery in Cloud Computing, pp. 245–267. Springer International Publishing, Cham (2016)Google Scholar
  4. 4.
    Sun, S., Song, W., Zomaya, A.Y., Xiang, Y., Choo, K.K.R., Shah, T., Wang, L.: Associative retrieval in spatial big data based on spreading activation with semantic ontology. Future Gener. Comput. Syst. 76(Supplement C), 499 – 509 (2017)Google Scholar
  5. 5.
    Pena, M.A., Liao, R., Brenning, A.: Using spectrotemporal indices to improve the fruit-tree crop classification accuracy. ISPRS J. Photogramm. Remote Sens. 128, 158–169 (2017)CrossRefGoogle Scholar
  6. 6.
    Waldhoff, G., Lussem, U., Bareth, G.: Multi-data approach for remote sensing-based regional crop rotation mapping: a case study for the rur catchment, Germany. Int. J. Appl. Earth Obs. Geoinf. 61(July 2016), 55–69 (2017)Google Scholar
  7. 7.
    Zhu, L., Radeloff, V.C., Ives, A.R.: Improving the mapping of crop types in the Midwestern U.S. by fusing Landsat and MODIS satellite data. Int. J. Appl. Earth Obs. Geoinf. 58, 1–11 (2017)Google Scholar
  8. 8.
    Nasirahmadi, A., Miraei Ashtiani, S.H.: Bag-of-Feature model for sweet and bitter almond classification. Biosyst. Eng. 156, 51–60 (2017)CrossRefGoogle Scholar
  9. 9.
    Pena, M.A., Brenning, A.: Assessing fruit-tree crop classification from Landsat-8 time series for the Maipo Valley. Chile. Remote Sens. Environ. 171, 234–244 (2015)CrossRefGoogle Scholar
  10. 10.
    Gilbertson, J.K., van Niekerk, A.: Value of dimensionality reduction for crop differentiation with multi-temporal imagery and machine learning. Comput. Electron. Agricult. 142, 50–58 (2017)CrossRefGoogle Scholar
  11. 11.
    Gilbertson, J.K., Kemp, J., van Niekerk, A.: Effect of pan-sharpening multi-temporal Landsat 8 imagery for crop type differentiation using different classification techniques. Comput. Electron. Agricult. 134, 151–159 (2017)CrossRefGoogle Scholar
  12. 12.
    Sirsat, M.S., Cernadas, E., Fernández-Delgado, M., Khan, R.: Classification of agricultural soil parameters in India. Comput. Electron. Agricult. 135, 269–279 (2017)CrossRefGoogle Scholar
  13. 13.
    Coniu, t., Groza, A.: Improving remote sensing crop classification by argumentation-based conflict resolution in ensemble learning. Expert Syst. Appl. 64, 269–286 (2016)Google Scholar
  14. 14.
    Pathan, S., Prabhu, K.G., Siddalingaswamy, P.C.: Techniques and algorithms for computer aided diagnosis of pigmented skin lesions a review. Biomed. Signal Process. Control 39, 237–262 (2018)CrossRefGoogle Scholar
  15. 15.
    Piiroinen, R., Heiskanen, J., Mõttus, M., Pellikka, P.: Classification of crops across heterogeneous agricultural landscape in Kenya using AisaEAGLE imaging spectroscopy data. Int. J. Appl. Earth Obs. Geoinf. 39, 1–8 (2015)CrossRefGoogle Scholar
  16. 16.
    Zheng, B., Myint, S.W., Thenkabail, P.S., Aggarwal, R.M.: A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. Int. J. Appl. Earth Obs. Geoinf. 34(1), 103–112 (2015)CrossRefGoogle Scholar
  17. 17.
    Wu, Z., Lin, W., Zhang, Z., Wen, A., Lin, L.: An ensemble random forest algorithm for insurance big data analysis. In: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), vol. 5, pp. 531–536 (2017)Google Scholar
  18. 18.
    Li, L., Solana, C., Canters, F., Kervyn, M.: Testing random forest classification for identifying lava flows and mapping age groups on a single Landsat 8 image. J. Volcanol. Geotherm. Res. 345, 109–124 (2017)CrossRefGoogle Scholar
  19. 19.
    Medeiros, S.C., Hagen, S.C., Weishampel, J.F.: A Random Forest Model Based on Lidar and Field Measurements for Parameterizing Surface Roughness in Coastal Modeling. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(4), 1582–1590 (2015)Google Scholar
  20. 20.
    Low, F., Michel, U., Dech, S., Conrad, C.: Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using Support Vector Machines. ISPRS J. Photogramm. Remote Sens. 85, 102–119 (2013)CrossRefGoogle Scholar
  21. 21.
    Chen, W., Pourghasemi, H.R., Kornejady, A., Zhang, N.: Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma 305(June), 314–327 (2017)CrossRefGoogle Scholar
  22. 22.
    Taravat, A., Del Frate, F., Cornaro, C., Vergari, S.: Neural networks and support vector machine algorithms for automatic cloud classification of whole-sky ground-based images. IEEE Geosci. Remote Sens. Lett. 12(3), 666–670 (2015)CrossRefGoogle Scholar
  23. 23.
    Barreto, T.L., Rosa, R.A., Wimmer, C., Moreira, J.R., Bins, L.S., Cappabianco, F.A.M., Almeida, J.: Classification of Detected Changes From Multitemporal High-Res Xband SAR Images: Intensity and Texture Descriptors From SuperPixels. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(12), 5436–5448 (2016)Google Scholar
  24. 24.
    Mountrakis, G., Im, J., Ogole, C.: Support vector machines in remote sensing: a review. ISPRS J. Photogramm. Remote Sens. 66(3), 247–259 (2011)CrossRefGoogle Scholar
  25. 25.
    Shastry, K.A., Sanjay, H.A., Deexith, G.: Quadratic-radial-basis-function-kernel for classifying multi-class agricultural datasets with continuous attributes. Appl. Soft Comput. J. 58, 65–74 (2017)CrossRefGoogle Scholar
  26. 26.
    Immitzer, M., Vuolo, F., Atzberger, C.: First experience with sentinel-2 data for crop and tree species classifications in central europe. Remote Sens. 8(3) (2016)Google Scholar
  27. 27.
    Ertuğrul, Ö.F., Tağluk, M.E.: A novel version of k nearest neighbor: Dependent nearest neighbor. Appl. Soft Comput. 55(Supplement C), 480–490 (2017)Google Scholar
  28. 28.
    Genuer, R., Poggi, J.M., Tuleau-Malot, C., Villa-Vialaneix, N.: Random forests for big data. Big Data Res. 9(Supplement C), 28–46 (2017)Google Scholar
  29. 29.
    Dong, Y., Du, B., Zhang, L.: Target detection based on random forest metric learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(4), 1830–1838 (2015)Google Scholar
  30. 30.
    Paul, S., Magdon-Ismail, M., Drineas, P.: Feature selection for linear SVM with provable guarantees. Pattern Recognit. 60, 205–214 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Noureldin Laban
    • 1
    Email author
  • Bassam Abdellatif
    • 1
  • Hala M. Ebeid
    • 2
  • Howida A. Shedeed
    • 2
  • Mohamed F. Tolba
    • 2
  1. 1.Data Reception and Analysis DivisionNational Authority for Remote Sensing and Space ScienceCairoEgypt
  2. 2.Faculty of Computer and Information SciencesAin Shams UniversityCairoEgypt

Personalised recommendations